Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,23 @@
|
|
1 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
-
import torch
|
3 |
import gradio as gr
|
|
|
4 |
|
5 |
-
# Load the
|
6 |
-
|
7 |
-
model = AutoModelForCausalLM.from_pretrained("dalle-mini/dalle-mega")
|
8 |
|
9 |
-
# Define the function
|
10 |
-
def generate_image(
|
11 |
-
inputs = tokenizer(
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
outputs = model.generate(**inputs)
|
16 |
-
|
17 |
-
# Convert output to a format suitable for Gradio
|
18 |
-
# This part may need to be adapted based on actual output format
|
19 |
-
return outputs
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
fn=generate_image,
|
24 |
-
inputs=
|
25 |
-
outputs=
|
26 |
-
|
27 |
)
|
28 |
|
29 |
-
# Launch the app
|
30 |
-
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import eBart
|
3 |
|
4 |
+
# Load the DALL-E Mega model
|
5 |
+
model = eBart.from_pretrained("dalle-mini/dalle-mega")
|
|
|
6 |
|
7 |
+
# Define the function to generate images
|
8 |
+
def generate_image(text):
|
9 |
+
inputs = model.tokenizer(text, return_tensors="pt")
|
10 |
+
outputs = model.generate(**inputs)
|
11 |
+
image_url = model.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
12 |
+
return image_url
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
# Create the Gradio interface
|
15 |
+
ui = gr.Interface(
|
16 |
fn=generate_image,
|
17 |
+
inputs="text",
|
18 |
+
outputs="image",
|
19 |
+
title="DALL-E Mega Image Generator"
|
20 |
)
|
21 |
|
22 |
+
# Launch the Gradio app
|
23 |
+
ui.launch()
|