Spaces:
Runtime error
Runtime error
import gradio as gr | |
from gradio_client import Client | |
# Initialize the client with the model endpoint | |
client = Client("black-forest-labs/FLUX.1-dev") | |
def generate_image(prompt, seed=0, randomize_seed=True, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28): | |
# Make the API request | |
result = client.predict( | |
prompt=prompt, | |
seed=seed, | |
randomize_seed=randomize_seed, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
api_name="/infer" | |
) | |
return result | |
# Define the Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Text to Image Generation") | |
with gr.Row(): | |
prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here...") | |
seed = gr.Slider(minimum=0, maximum=100000, step=1, value=0, label="Seed") | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
width = gr.Slider(minimum=256, maximum=2048, step=32, value=1024, label="Width") | |
height = gr.Slider(minimum=256, maximum=2048, step=32, value=1024, label="Height") | |
guidance_scale = gr.Slider(minimum=1, maximum=15, step=0.1, value=3.5, label="Guidance Scale") | |
num_inference_steps = gr.Slider(minimum=1, maximum=50, step=1, value=28, label="Number of Inference Steps") | |
with gr.Row(): | |
generate_button = gr.Button("Generate Image") | |
result = gr.Image(label="Generated Image") | |
# Define the button click action | |
generate_button.click( | |
fn=generate_image, | |
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs=result | |
) | |
# Launch the Gradio app | |
demo.launch() | |