text2image / app.py
My-AI-Projects's picture
Update app.py
64b241d verified
raw
history blame
1.74 kB
import gradio as gr
from gradio_client import Client
# Initialize the client with the model endpoint
client = Client("black-forest-labs/FLUX.1-dev")
def generate_image(prompt, seed=0, randomize_seed=True, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28):
# Make the API request
result = client.predict(
prompt=prompt,
seed=seed,
randomize_seed=randomize_seed,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
api_name="/infer"
)
return result
# Define the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Text to Image Generation")
with gr.Row():
prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here...")
seed = gr.Slider(minimum=0, maximum=100000, step=1, value=0, label="Seed")
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
width = gr.Slider(minimum=256, maximum=2048, step=32, value=1024, label="Width")
height = gr.Slider(minimum=256, maximum=2048, step=32, value=1024, label="Height")
guidance_scale = gr.Slider(minimum=1, maximum=15, step=0.1, value=3.5, label="Guidance Scale")
num_inference_steps = gr.Slider(minimum=1, maximum=50, step=1, value=28, label="Number of Inference Steps")
with gr.Row():
generate_button = gr.Button("Generate Image")
result = gr.Image(label="Generated Image")
# Define the button click action
generate_button.click(
fn=generate_image,
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=result
)
# Launch the Gradio app
demo.launch()