Spaces:
Runtime error
Runtime error
import os | |
import torch | |
import random | |
from huggingface_hub import snapshot_download | |
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256 import StableDiffusionXLPipeline | |
from kolors.models.modeling_chatglm import ChatGLMModel | |
from kolors.models.tokenization_chatglm import ChatGLMTokenizer | |
from diffusers import UNet2DConditionModel, AutoencoderKL | |
from diffusers import EulerDiscreteScheduler | |
import gradio as gr | |
# Download the model files | |
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors") | |
# Function to load models | |
def load_models(): | |
text_encoder = ChatGLMModel.from_pretrained( | |
os.path.join(ckpt_dir, 'text_encoder'), | |
torch_dtype=torch.float16).half() | |
tokenizer = ChatGLMTokenizer.from_pretrained(os.path.join(ckpt_dir, 'text_encoder')) | |
vae = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir, "vae"), revision=None).half() | |
scheduler = EulerDiscreteScheduler.from_pretrained(os.path.join(ckpt_dir, "scheduler")) | |
unet = UNet2DConditionModel.from_pretrained(os.path.join(ckpt_dir, "unet"), revision=None).half() | |
return StableDiffusionXLPipeline( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
force_zeros_for_empty_prompt=False | |
) | |
# Create a global variable to hold the pipeline | |
pipe = load_models() | |
def generate_image(prompt, negative_prompt, height, width, num_inference_steps, guidance_scale, num_images_per_prompt, use_random_seed, seed, progress=gr.Progress(track_tqdm=True)): | |
if use_random_seed: | |
seed = random.randint(0, 2**32 - 1) | |
else: | |
seed = int(seed) # Ensure seed is an integer | |
# Move the model to the CPU for inference and clear unnecessary variables | |
with torch.no_grad(): | |
generator = torch.Generator().manual_seed(seed) | |
result = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
height=height, | |
width=width, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
num_images_per_prompt=num_images_per_prompt, | |
generator=generator | |
) | |
image = result.images | |
return image, seed | |
# Gradio interface | |
iface = gr.Interface( | |
fn=generate_image, | |
inputs=[ | |
gr.Textbox(label="Prompt"), | |
gr.Textbox(label="Negative Prompt") | |
], | |
additional_inputs=[ | |
gr.Slider(512, 2048, 1024, step=64, label="Height"), | |
gr.Slider(512, 2048, 1024, step=64, label="Width"), | |
gr.Slider(20, 50, 20, step=1, label="Number of Inference Steps"), | |
gr.Slider(1, 20, 5, step=0.5, label="Guidance Scale"), | |
gr.Slider(1, 4, 1, step=1, label="Number of images per prompt"), | |
gr.Checkbox(label="Use Random Seed", value=True), | |
gr.Number(label="Seed", value=0, precision=0) | |
], | |
additional_inputs_accordion=gr.Accordion(label="Advanced settings", open=False), | |
outputs=[ | |
gr.Gallery(label="Result", elem_id="gallery", show_label=False), | |
gr.Number(label="Seed Used") | |
], | |
title="Kolors", | |
theme='bethecloud/storj_theme', | |
) | |
iface.launch() | |