import cv2 import math import numpy as np import os import torch from torchvision.utils import make_grid def img2tensor(imgs, bgr2rgb=True, float32=True): """Numpy array to tensor. Args: imgs (list[ndarray] | ndarray): Input images. bgr2rgb (bool): Whether to change bgr to rgb. float32 (bool): Whether to change to float32. Returns: list[tensor] | tensor: Tensor images. If returned results only have one element, just return tensor. """ def _totensor(img, bgr2rgb, float32): if img.shape[2] == 3 and bgr2rgb: if img.dtype == 'float64': img = img.astype('float32') img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = torch.from_numpy(img.transpose(2, 0, 1)) if float32: img = img.float() return img if isinstance(imgs, list): return [_totensor(img, bgr2rgb, float32) for img in imgs] else: return _totensor(imgs, bgr2rgb, float32) def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)): """Convert torch Tensors into image numpy arrays. After clamping to [min, max], values will be normalized to [0, 1]. Args: tensor (Tensor or list[Tensor]): Accept shapes: 1) 4D mini-batch Tensor of shape (B x 3/1 x H x W); 2) 3D Tensor of shape (3/1 x H x W); 3) 2D Tensor of shape (H x W). Tensor channel should be in RGB order. rgb2bgr (bool): Whether to change rgb to bgr. out_type (numpy type): output types. If ``np.uint8``, transform outputs to uint8 type with range [0, 255]; otherwise, float type with range [0, 1]. Default: ``np.uint8``. min_max (tuple[int]): min and max values for clamp. Returns: (Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of shape (H x W). The channel order is BGR. """ if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))): raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}') if torch.is_tensor(tensor): tensor = [tensor] result = [] for _tensor in tensor: _tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max) _tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0]) n_dim = _tensor.dim() if n_dim == 4: img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy() img_np = img_np.transpose(1, 2, 0) if rgb2bgr: img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) elif n_dim == 3: img_np = _tensor.numpy() img_np = img_np.transpose(1, 2, 0) if img_np.shape[2] == 1: # gray image img_np = np.squeeze(img_np, axis=2) else: if rgb2bgr: img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) elif n_dim == 2: img_np = _tensor.numpy() else: raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}') if out_type == np.uint8: # Unlike MATLAB, numpy.unit8() WILL NOT round by default. img_np = (img_np * 255.0).round() img_np = img_np.astype(out_type) result.append(img_np) if len(result) == 1: result = result[0] return result def tensor2img_fast(tensor, rgb2bgr=True, min_max=(0, 1)): """This implementation is slightly faster than tensor2img. It now only supports torch tensor with shape (1, c, h, w). Args: tensor (Tensor): Now only support torch tensor with (1, c, h, w). rgb2bgr (bool): Whether to change rgb to bgr. Default: True. min_max (tuple[int]): min and max values for clamp. """ output = tensor.squeeze(0).detach().clamp_(*min_max).permute(1, 2, 0) output = (output - min_max[0]) / (min_max[1] - min_max[0]) * 255 output = output.type(torch.uint8).cpu().numpy() if rgb2bgr: output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) return output def imfrombytes(content, flag='color', float32=False): """Read an image from bytes. Args: content (bytes): Image bytes got from files or other streams. flag (str): Flags specifying the color type of a loaded image, candidates are `color`, `grayscale` and `unchanged`. float32 (bool): Whether to change to float32., If True, will also norm to [0, 1]. Default: False. Returns: ndarray: Loaded image array. """ img_np = np.frombuffer(content, np.uint8) imread_flags = {'color': cv2.IMREAD_COLOR, 'grayscale': cv2.IMREAD_GRAYSCALE, 'unchanged': cv2.IMREAD_UNCHANGED} img = cv2.imdecode(img_np, imread_flags[flag]) if float32: img = img.astype(np.float32) / 255. return img def imwrite(img, file_path, params=None, auto_mkdir=True): """Write image to file. Args: img (ndarray): Image array to be written. file_path (str): Image file path. params (None or list): Same as opencv's :func:`imwrite` interface. auto_mkdir (bool): If the parent folder of `file_path` does not exist, whether to create it automatically. Returns: bool: Successful or not. """ if auto_mkdir: dir_name = os.path.abspath(os.path.dirname(file_path)) os.makedirs(dir_name, exist_ok=True) ok = cv2.imwrite(file_path, img, params) if not ok: raise IOError('Failed in writing images.') def crop_border(imgs, crop_border): """Crop borders of images. Args: imgs (list[ndarray] | ndarray): Images with shape (h, w, c). crop_border (int): Crop border for each end of height and weight. Returns: list[ndarray]: Cropped images. """ if crop_border == 0: return imgs else: if isinstance(imgs, list): return [v[crop_border:-crop_border, crop_border:-crop_border, ...] for v in imgs] else: return imgs[crop_border:-crop_border, crop_border:-crop_border, ...] def tensor_lab2rgb(labs, illuminant="D65", observer="2"): """ Args: lab : (B, C, H, W) Returns: tuple : (C, H, W) """ illuminants = \ {"A": {'2': (1.098466069456375, 1, 0.3558228003436005), '10': (1.111420406956693, 1, 0.3519978321919493)}, "D50": {'2': (0.9642119944211994, 1, 0.8251882845188288), '10': (0.9672062750333777, 1, 0.8142801513128616)}, "D55": {'2': (0.956797052643698, 1, 0.9214805860173273), '10': (0.9579665682254781, 1, 0.9092525159847462)}, "D65": {'2': (0.95047, 1., 1.08883), # This was: `lab_ref_white` '10': (0.94809667673716, 1, 1.0730513595166162)}, "D75": {'2': (0.9497220898840717, 1, 1.226393520724154), '10': (0.9441713925645873, 1, 1.2064272211720228)}, "E": {'2': (1.0, 1.0, 1.0), '10': (1.0, 1.0, 1.0)}} xyz_from_rgb = np.array([[0.412453, 0.357580, 0.180423], [0.212671, 0.715160, 0.072169], [0.019334, 0.119193, 0.950227]]) rgb_from_xyz = np.array([[3.240481340, -0.96925495, 0.055646640], [-1.53715152, 1.875990000, -0.20404134], [-0.49853633, 0.041555930, 1.057311070]]) B, C, H, W = labs.shape arrs = labs.permute((0, 2, 3, 1)).contiguous() # (B, 3, H, W) -> (B, H, W, 3) L, a, b = arrs[:, :, :, 0:1], arrs[:, :, :, 1:2], arrs[:, :, :, 2:] y = (L + 16.) / 116. x = (a / 500.) + y z = y - (b / 200.) invalid = z.data < 0 z[invalid] = 0 xyz = torch.cat([x, y, z], dim=3) mask = xyz.data > 0.2068966 mask_xyz = xyz.clone() mask_xyz[mask] = torch.pow(xyz[mask], 3.0) mask_xyz[~mask] = (xyz[~mask] - 16.0 / 116.) / 7.787 xyz_ref_white = illuminants[illuminant][observer] for i in range(C): mask_xyz[:, :, :, i] = mask_xyz[:, :, :, i] * xyz_ref_white[i] rgb_trans = torch.mm(mask_xyz.view(-1, 3), torch.from_numpy(rgb_from_xyz).type_as(xyz)).view(B, H, W, C) rgb = rgb_trans.permute((0, 3, 1, 2)).contiguous() mask = rgb.data > 0.0031308 mask_rgb = rgb.clone() mask_rgb[mask] = 1.055 * torch.pow(rgb[mask], 1 / 2.4) - 0.055 mask_rgb[~mask] = rgb[~mask] * 12.92 neg_mask = mask_rgb.data < 0 large_mask = mask_rgb.data > 1 mask_rgb[neg_mask] = 0 mask_rgb[large_mask] = 1 return mask_rgb