Spaces:
Sleeping
Sleeping
| import numpy as np | |
| import torch.nn.functional as F | |
| from scipy import linalg | |
| import torch.nn as nn | |
| from torchvision import models | |
| class INCEPTION_V3_FID(nn.Module): | |
| """pretrained InceptionV3 network returning feature maps""" | |
| # Index of default block of inception to return, | |
| # corresponds to output of final average pooling | |
| DEFAULT_BLOCK_INDEX = 3 | |
| # Maps feature dimensionality to their output blocks indices | |
| BLOCK_INDEX_BY_DIM = { | |
| 64: 0, # First max pooling features | |
| 192: 1, # Second max pooling featurs | |
| 768: 2, # Pre-aux classifier features | |
| 2048: 3 # Final average pooling features | |
| } | |
| def __init__(self, | |
| incep_state_dict, | |
| output_blocks=[DEFAULT_BLOCK_INDEX], | |
| resize_input=True): | |
| """Build pretrained InceptionV3 | |
| Parameters | |
| ---------- | |
| output_blocks : list of int | |
| Indices of blocks to return features of. Possible values are: | |
| - 0: corresponds to output of first max pooling | |
| - 1: corresponds to output of second max pooling | |
| - 2: corresponds to output which is fed to aux classifier | |
| - 3: corresponds to output of final average pooling | |
| resize_input : bool | |
| If true, bilinearly resizes input to width and height 299 before | |
| feeding input to model. As the network without fully connected | |
| layers is fully convolutional, it should be able to handle inputs | |
| of arbitrary size, so resizing might not be strictly needed | |
| normalize_input : bool | |
| If true, normalizes the input to the statistics the pretrained | |
| Inception network expects | |
| """ | |
| super(INCEPTION_V3_FID, self).__init__() | |
| self.resize_input = resize_input | |
| self.output_blocks = sorted(output_blocks) | |
| self.last_needed_block = max(output_blocks) | |
| assert self.last_needed_block <= 3, \ | |
| 'Last possible output block index is 3' | |
| self.blocks = nn.ModuleList() | |
| inception = models.inception_v3() | |
| inception.load_state_dict(incep_state_dict) | |
| for param in inception.parameters(): | |
| param.requires_grad = False | |
| # Block 0: input to maxpool1 | |
| block0 = [ | |
| inception.Conv2d_1a_3x3, | |
| inception.Conv2d_2a_3x3, | |
| inception.Conv2d_2b_3x3, | |
| nn.MaxPool2d(kernel_size=3, stride=2) | |
| ] | |
| self.blocks.append(nn.Sequential(*block0)) | |
| # Block 1: maxpool1 to maxpool2 | |
| if self.last_needed_block >= 1: | |
| block1 = [ | |
| inception.Conv2d_3b_1x1, | |
| inception.Conv2d_4a_3x3, | |
| nn.MaxPool2d(kernel_size=3, stride=2) | |
| ] | |
| self.blocks.append(nn.Sequential(*block1)) | |
| # Block 2: maxpool2 to aux classifier | |
| if self.last_needed_block >= 2: | |
| block2 = [ | |
| inception.Mixed_5b, | |
| inception.Mixed_5c, | |
| inception.Mixed_5d, | |
| inception.Mixed_6a, | |
| inception.Mixed_6b, | |
| inception.Mixed_6c, | |
| inception.Mixed_6d, | |
| inception.Mixed_6e, | |
| ] | |
| self.blocks.append(nn.Sequential(*block2)) | |
| # Block 3: aux classifier to final avgpool | |
| if self.last_needed_block >= 3: | |
| block3 = [ | |
| inception.Mixed_7a, | |
| inception.Mixed_7b, | |
| inception.Mixed_7c, | |
| nn.AdaptiveAvgPool2d(output_size=(1, 1)) | |
| ] | |
| self.blocks.append(nn.Sequential(*block3)) | |
| def forward(self, inp): | |
| """Get Inception feature maps | |
| Parameters | |
| ---------- | |
| inp : torch.autograd.Variable | |
| Input tensor of shape Bx3xHxW. Values are expected to be in | |
| range (0, 1) | |
| Returns | |
| ------- | |
| List of torch.autograd.Variable, corresponding to the selected output | |
| block, sorted ascending by index | |
| """ | |
| outp = [] | |
| x = inp | |
| if self.resize_input: | |
| x = F.interpolate(x, size=(299, 299), mode='bilinear') | |
| x = x.clone() | |
| # [-1.0, 1.0] --> [0, 1.0] | |
| x = x * 0.5 + 0.5 | |
| x[:, 0] = x[:, 0] * (0.229 / 0.5) + (0.485 - 0.5) / 0.5 | |
| x[:, 1] = x[:, 1] * (0.224 / 0.5) + (0.456 - 0.5) / 0.5 | |
| x[:, 2] = x[:, 2] * (0.225 / 0.5) + (0.406 - 0.5) / 0.5 | |
| for idx, block in enumerate(self.blocks): | |
| x = block(x) | |
| if idx in self.output_blocks: | |
| outp.append(x) | |
| if idx == self.last_needed_block: | |
| break | |
| return outp | |
| def get_activations(images, model, batch_size, verbose=False): | |
| """Calculates the activations of the pool_3 layer for all images. | |
| Params: | |
| -- images : Numpy array of dimension (n_images, 3, hi, wi). The values | |
| must lie between 0 and 1. | |
| -- model : Instance of inception model | |
| -- batch_size : the images numpy array is split into batches with | |
| batch size batch_size. A reasonable batch size depends | |
| on the hardware. | |
| -- verbose : If set to True and parameter out_step is given, the number | |
| of calculated batches is reported. | |
| Returns: | |
| -- A numpy array of dimension (num images, dims) that contains the | |
| activations of the given tensor when feeding inception with the | |
| query tensor. | |
| """ | |
| model.eval() | |
| #d0 = images.shape[0] | |
| d0 = int(images.size(0)) | |
| if batch_size > d0: | |
| print(('Warning: batch size is bigger than the data size. ' | |
| 'Setting batch size to data size')) | |
| batch_size = d0 | |
| n_batches = d0 // batch_size | |
| n_used_imgs = n_batches * batch_size | |
| pred_arr = np.empty((n_used_imgs, 2048)) | |
| for i in range(n_batches): | |
| if verbose: | |
| print('\rPropagating batch %d/%d' % (i + 1, n_batches), end='', flush=True) | |
| start = i * batch_size | |
| end = start + batch_size | |
| '''batch = torch.from_numpy(images[start:end]).type(torch.FloatTensor) | |
| batch = Variable(batch, volatile=True) | |
| if cfg.CUDA: | |
| batch = batch.cuda()''' | |
| batch = images[start:end] | |
| pred = model(batch)[0] | |
| # If model output is not scalar, apply global spatial average pooling. | |
| # This happens if you choose a dimensionality not equal 2048. | |
| if pred.shape[2] != 1 or pred.shape[3] != 1: | |
| pred = F.adaptive_avg_pool2d(pred, output_size=(1, 1)) | |
| pred_arr[start:end] = pred.cpu().data.numpy().reshape(batch_size, -1) | |
| if verbose: | |
| print(' done') | |
| return pred_arr | |
| def calculate_activation_statistics(act): | |
| """Calculation of the statistics used by the FID. | |
| Params: | |
| -- act : Numpy array of dimension (n_images, dim (e.g. 2048)). | |
| Returns: | |
| -- mu : The mean over samples of the activations of the pool_3 layer of | |
| the inception model. | |
| -- sigma : The covariance matrix of the activations of the pool_3 layer of | |
| the inception model. | |
| """ | |
| mu = np.mean(act, axis=0) | |
| sigma = np.cov(act, rowvar=False) | |
| return mu, sigma | |
| def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): | |
| """Numpy implementation of the Frechet Distance. | |
| The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) | |
| and X_2 ~ N(mu_2, C_2) is | |
| d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). | |
| Stable version by Dougal J. Sutherland. | |
| Params: | |
| -- mu1 : Numpy array containing the activations of a layer of the | |
| inception net (like returned by the function 'get_predictions') | |
| for generated samples. | |
| -- mu2 : The sample mean over activations, precalculated on an | |
| representive data set. | |
| -- sigma1: The covariance matrix over activations for generated samples. | |
| -- sigma2: The covariance matrix over activations, precalculated on an | |
| representive data set. | |
| Returns: | |
| -- : The Frechet Distance. | |
| """ | |
| mu1 = np.atleast_1d(mu1) | |
| mu2 = np.atleast_1d(mu2) | |
| sigma1 = np.atleast_2d(sigma1) | |
| sigma2 = np.atleast_2d(sigma2) | |
| assert mu1.shape == mu2.shape, \ | |
| 'Training and test mean vectors have different lengths' | |
| assert sigma1.shape == sigma2.shape, \ | |
| 'Training and test covariances have different dimensions' | |
| diff = mu1 - mu2 | |
| # Product might be almost singular | |
| covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) | |
| if not np.isfinite(covmean).all(): | |
| msg = ('fid calculation produces singular product; ' | |
| 'adding %s to diagonal of cov estimates') % eps | |
| print(msg) | |
| offset = np.eye(sigma1.shape[0]) * eps | |
| covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) | |
| # Numerical error might give slight imaginary component | |
| if np.iscomplexobj(covmean): | |
| if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): | |
| m = np.max(np.abs(covmean.imag)) | |
| raise ValueError('Imaginary component {}'.format(m)) | |
| covmean = covmean.real | |
| tr_covmean = np.trace(covmean) | |
| return (diff.dot(diff) + np.trace(sigma1) + | |
| np.trace(sigma2) - 2 * tr_covmean) | |