Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch.nn.functional as F | |
from scipy import linalg | |
import torch.nn as nn | |
from torchvision import models | |
class INCEPTION_V3_FID(nn.Module): | |
"""pretrained InceptionV3 network returning feature maps""" | |
# Index of default block of inception to return, | |
# corresponds to output of final average pooling | |
DEFAULT_BLOCK_INDEX = 3 | |
# Maps feature dimensionality to their output blocks indices | |
BLOCK_INDEX_BY_DIM = { | |
64: 0, # First max pooling features | |
192: 1, # Second max pooling featurs | |
768: 2, # Pre-aux classifier features | |
2048: 3 # Final average pooling features | |
} | |
def __init__(self, | |
incep_state_dict, | |
output_blocks=[DEFAULT_BLOCK_INDEX], | |
resize_input=True): | |
"""Build pretrained InceptionV3 | |
Parameters | |
---------- | |
output_blocks : list of int | |
Indices of blocks to return features of. Possible values are: | |
- 0: corresponds to output of first max pooling | |
- 1: corresponds to output of second max pooling | |
- 2: corresponds to output which is fed to aux classifier | |
- 3: corresponds to output of final average pooling | |
resize_input : bool | |
If true, bilinearly resizes input to width and height 299 before | |
feeding input to model. As the network without fully connected | |
layers is fully convolutional, it should be able to handle inputs | |
of arbitrary size, so resizing might not be strictly needed | |
normalize_input : bool | |
If true, normalizes the input to the statistics the pretrained | |
Inception network expects | |
""" | |
super(INCEPTION_V3_FID, self).__init__() | |
self.resize_input = resize_input | |
self.output_blocks = sorted(output_blocks) | |
self.last_needed_block = max(output_blocks) | |
assert self.last_needed_block <= 3, \ | |
'Last possible output block index is 3' | |
self.blocks = nn.ModuleList() | |
inception = models.inception_v3() | |
inception.load_state_dict(incep_state_dict) | |
for param in inception.parameters(): | |
param.requires_grad = False | |
# Block 0: input to maxpool1 | |
block0 = [ | |
inception.Conv2d_1a_3x3, | |
inception.Conv2d_2a_3x3, | |
inception.Conv2d_2b_3x3, | |
nn.MaxPool2d(kernel_size=3, stride=2) | |
] | |
self.blocks.append(nn.Sequential(*block0)) | |
# Block 1: maxpool1 to maxpool2 | |
if self.last_needed_block >= 1: | |
block1 = [ | |
inception.Conv2d_3b_1x1, | |
inception.Conv2d_4a_3x3, | |
nn.MaxPool2d(kernel_size=3, stride=2) | |
] | |
self.blocks.append(nn.Sequential(*block1)) | |
# Block 2: maxpool2 to aux classifier | |
if self.last_needed_block >= 2: | |
block2 = [ | |
inception.Mixed_5b, | |
inception.Mixed_5c, | |
inception.Mixed_5d, | |
inception.Mixed_6a, | |
inception.Mixed_6b, | |
inception.Mixed_6c, | |
inception.Mixed_6d, | |
inception.Mixed_6e, | |
] | |
self.blocks.append(nn.Sequential(*block2)) | |
# Block 3: aux classifier to final avgpool | |
if self.last_needed_block >= 3: | |
block3 = [ | |
inception.Mixed_7a, | |
inception.Mixed_7b, | |
inception.Mixed_7c, | |
nn.AdaptiveAvgPool2d(output_size=(1, 1)) | |
] | |
self.blocks.append(nn.Sequential(*block3)) | |
def forward(self, inp): | |
"""Get Inception feature maps | |
Parameters | |
---------- | |
inp : torch.autograd.Variable | |
Input tensor of shape Bx3xHxW. Values are expected to be in | |
range (0, 1) | |
Returns | |
------- | |
List of torch.autograd.Variable, corresponding to the selected output | |
block, sorted ascending by index | |
""" | |
outp = [] | |
x = inp | |
if self.resize_input: | |
x = F.interpolate(x, size=(299, 299), mode='bilinear') | |
x = x.clone() | |
# [-1.0, 1.0] --> [0, 1.0] | |
x = x * 0.5 + 0.5 | |
x[:, 0] = x[:, 0] * (0.229 / 0.5) + (0.485 - 0.5) / 0.5 | |
x[:, 1] = x[:, 1] * (0.224 / 0.5) + (0.456 - 0.5) / 0.5 | |
x[:, 2] = x[:, 2] * (0.225 / 0.5) + (0.406 - 0.5) / 0.5 | |
for idx, block in enumerate(self.blocks): | |
x = block(x) | |
if idx in self.output_blocks: | |
outp.append(x) | |
if idx == self.last_needed_block: | |
break | |
return outp | |
def get_activations(images, model, batch_size, verbose=False): | |
"""Calculates the activations of the pool_3 layer for all images. | |
Params: | |
-- images : Numpy array of dimension (n_images, 3, hi, wi). The values | |
must lie between 0 and 1. | |
-- model : Instance of inception model | |
-- batch_size : the images numpy array is split into batches with | |
batch size batch_size. A reasonable batch size depends | |
on the hardware. | |
-- verbose : If set to True and parameter out_step is given, the number | |
of calculated batches is reported. | |
Returns: | |
-- A numpy array of dimension (num images, dims) that contains the | |
activations of the given tensor when feeding inception with the | |
query tensor. | |
""" | |
model.eval() | |
#d0 = images.shape[0] | |
d0 = int(images.size(0)) | |
if batch_size > d0: | |
print(('Warning: batch size is bigger than the data size. ' | |
'Setting batch size to data size')) | |
batch_size = d0 | |
n_batches = d0 // batch_size | |
n_used_imgs = n_batches * batch_size | |
pred_arr = np.empty((n_used_imgs, 2048)) | |
for i in range(n_batches): | |
if verbose: | |
print('\rPropagating batch %d/%d' % (i + 1, n_batches), end='', flush=True) | |
start = i * batch_size | |
end = start + batch_size | |
'''batch = torch.from_numpy(images[start:end]).type(torch.FloatTensor) | |
batch = Variable(batch, volatile=True) | |
if cfg.CUDA: | |
batch = batch.cuda()''' | |
batch = images[start:end] | |
pred = model(batch)[0] | |
# If model output is not scalar, apply global spatial average pooling. | |
# This happens if you choose a dimensionality not equal 2048. | |
if pred.shape[2] != 1 or pred.shape[3] != 1: | |
pred = F.adaptive_avg_pool2d(pred, output_size=(1, 1)) | |
pred_arr[start:end] = pred.cpu().data.numpy().reshape(batch_size, -1) | |
if verbose: | |
print(' done') | |
return pred_arr | |
def calculate_activation_statistics(act): | |
"""Calculation of the statistics used by the FID. | |
Params: | |
-- act : Numpy array of dimension (n_images, dim (e.g. 2048)). | |
Returns: | |
-- mu : The mean over samples of the activations of the pool_3 layer of | |
the inception model. | |
-- sigma : The covariance matrix of the activations of the pool_3 layer of | |
the inception model. | |
""" | |
mu = np.mean(act, axis=0) | |
sigma = np.cov(act, rowvar=False) | |
return mu, sigma | |
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): | |
"""Numpy implementation of the Frechet Distance. | |
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) | |
and X_2 ~ N(mu_2, C_2) is | |
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). | |
Stable version by Dougal J. Sutherland. | |
Params: | |
-- mu1 : Numpy array containing the activations of a layer of the | |
inception net (like returned by the function 'get_predictions') | |
for generated samples. | |
-- mu2 : The sample mean over activations, precalculated on an | |
representive data set. | |
-- sigma1: The covariance matrix over activations for generated samples. | |
-- sigma2: The covariance matrix over activations, precalculated on an | |
representive data set. | |
Returns: | |
-- : The Frechet Distance. | |
""" | |
mu1 = np.atleast_1d(mu1) | |
mu2 = np.atleast_1d(mu2) | |
sigma1 = np.atleast_2d(sigma1) | |
sigma2 = np.atleast_2d(sigma2) | |
assert mu1.shape == mu2.shape, \ | |
'Training and test mean vectors have different lengths' | |
assert sigma1.shape == sigma2.shape, \ | |
'Training and test covariances have different dimensions' | |
diff = mu1 - mu2 | |
# Product might be almost singular | |
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) | |
if not np.isfinite(covmean).all(): | |
msg = ('fid calculation produces singular product; ' | |
'adding %s to diagonal of cov estimates') % eps | |
print(msg) | |
offset = np.eye(sigma1.shape[0]) * eps | |
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) | |
# Numerical error might give slight imaginary component | |
if np.iscomplexobj(covmean): | |
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): | |
m = np.max(np.abs(covmean.imag)) | |
raise ValueError('Imaginary component {}'.format(m)) | |
covmean = covmean.real | |
tr_covmean = np.trace(covmean) | |
return (diff.dot(diff) + np.trace(sigma1) + | |
np.trace(sigma2) - 2 * tr_covmean) | |