Multimodal / app.py
Muzammil6376's picture
Update app.py
ae644bf verified
raw
history blame
8.88 kB
import os
import shutil
import PyPDF2
import gradio as gr
from PIL import Image
from typing import List
# Unstructured for rich PDF parsing
from unstructured.partition.pdf import partition_pdf
from unstructured.partition.utils.constants import PartitionStrategy
# Vision-language captioning (BLIP)
from transformers import BlipProcessor, BlipForConditionalGeneration
# Hugging Face Inference client
from huggingface_hub import InferenceClient
# LangChain vectorstore and embeddings
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
# ── Globals ───────────────────────────────────────────────────────────────────
retriever = None # FAISS retriever for multimodal content
current_pdf_name = None # Name of the currently loaded PDF
combined_texts: List[str] = [] # Combined text + image captions corpus
# ── Setup: directories ─────────────────────────────────────────────────────────
FIGURES_DIR = "figures"
if os.path.exists(FIGURES_DIR):
shutil.rmtree(FIGURES_DIR)
os.makedirs(FIGURES_DIR, exist_ok=True)
# ── Clients & Models ───────────────────────────────────────────────────────────
hf = InferenceClient() # will use HUGGINGFACEHUB_API_TOKEN from env
# BLIP captioner (small local model download)
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
def generate_caption(image_path: str) -> str:
"""Ask BLIP to caption a local image."""
image = Image.open(image_path).convert("RGB")
inputs = blip_processor(image, return_tensors="pt")
out = blip_model.generate(**inputs)
return blip_processor.decode(out[0], skip_special_tokens=True)
def embed_texts(texts: List[str]) -> List[List[float]]:
"""
Call the HF embeddings endpoint using google/Gemma-Embeddings-v1.0.
"""
resp = hf.embeddings(
model="google/Gemma-Embeddings-v1.0",
inputs=texts,
)
return resp["embeddings"]
def process_pdf(pdf_file) -> str:
"""
Parse the PDF, caption images, combine text+captions, embed remotely,
build FAISS index, and prepare retriever. Falls back to text-only if poppler is missing.
"""
from pdf2image.exceptions import PDFInfoNotInstalledError
global current_pdf_name, retriever, combined_texts
if pdf_file is None:
return "❌ Please upload a PDF file."
pdf_path = pdf_file.name
current_pdf_name = os.path.basename(pdf_path)
# Try rich parsing; fallback if poppler/pdfinfo is unavailable
try:
elements = partition_pdf(
filename=pdf_path,
strategy=PartitionStrategy.HI_RES,
extract_image_block_types=["Image", "Table"],
extract_image_block_output_dir=FIGURES_DIR,
)
text_elements = [el.text for el in elements if el.category not in ["Image","Table"] and el.text]
image_files = [os.path.join(FIGURES_DIR, f) for f in os.listdir(FIGURES_DIR)
if f.lower().endswith((".png",".jpg",".jpeg"))]
except PDFInfoNotInstalledError:
# Fallback: text-only extraction
from PyPDF2 import PdfReader
reader = PdfReader(pdf_path)
text_elements = [page.extract_text() or "" for page in reader.pages]
image_files = []
# Caption images if any
captions = [generate_caption(img) for img in image_files]
combined_texts = text_elements + captions
vectors = embed_texts(combined_texts)
index = FAISS.from_embeddings(texts=combined_texts, embeddings=vectors)
retriever = index.as_retriever(search_kwargs={"k": 2})
return f"βœ… Indexed '{current_pdf_name}' β€” {len(text_elements)} text blocks + {len(captions)} image captions"
"""
Parse the PDF, caption images, combine text+captions, embed remotely,
build FAISS index, and prepare retriever.
"""
global current_pdf_name, retriever, combined_texts
if pdf_file is None:
return "❌ Please upload a PDF file."
# Save and name
pdf_path = pdf_file.name
current_pdf_name = os.path.basename(pdf_path)
# Extract blocks
elements = partition_pdf(
filename=pdf_path,
strategy=PartitionStrategy.HI_RES,
extract_image_block_types=["Image", "Table"],
extract_image_block_output_dir=FIGURES_DIR,
)
# Split text vs. images
text_elements = [
el.text for el in elements
if el.category not in ["Image", "Table"] and el.text
]
image_files = [
os.path.join(FIGURES_DIR, f)
for f in os.listdir(FIGURES_DIR)
if f.lower().endswith((".png", ".jpg", ".jpeg"))
]
# Caption images
captions = [generate_caption(img) for img in image_files]
# Combine
combined_texts = text_elements + captions
# Remote embeddings
vectors = embed_texts(combined_texts)
# Build FAISS
index = FAISS.from_embeddings(
texts=combined_texts,
embeddings=vectors,
)
retriever = index.as_retriever(search_kwargs={"k": 2})
return f"βœ… Indexed '{current_pdf_name}' β€” {len(text_elements)} text blocks + {len(captions)} image captions"
def ask_question(question: str) -> str:
"""
Retrieve top-k chunks from FAISS and call chat_completions endpoint.
"""
global retriever
if retriever is None:
return "❌ Please upload and process a PDF first."
if not question.strip():
return "❌ Please enter a question."
docs = retriever.get_relevant_documents(question)
context = "\n\n".join(doc.page_content for doc in docs)
prompt = (
"Use the following document excerpts to answer the question.\n\n"
f"{context}\n\n"
f"Question: {question}\n"
"Answer:"
)
response = hf.chat_completion(
model="google/gemma-3-27b-it",
messages=[{"role": "user", "content": prompt}],
max_tokens=128,
temperature=0.5,
)
return response["choices"][0]["message"]["content"].strip()
def clear_interface():
"""Reset state and clear extracted images."""
global retriever, current_pdf_name, combined_texts
retriever = None
current_pdf_name = None
combined_texts = []
shutil.rmtree(FIGURES_DIR, ignore_errors=True)
os.makedirs(FIGURES_DIR, exist_ok=True)
return ""
# ── Gradio UI ────────────────────────────────────────────────────────────────
theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="blue")
with gr.Blocks(theme=theme, css="""
.container { border-radius: 10px; padding: 15px; }
.pdf-active { border-left: 3px solid #6366f1;
padding-left: 10px;
background-color: rgba(99,102,241,0.1); }
.footer { text-align: center; margin-top: 30px;
font-size: 0.8em; color: #666; }
.main-title { text-align: center; font-size: 64px;
font-weight: bold; margin-bottom: 20px; }
""") as demo:
gr.Markdown("<div class='main-title'>DocQueryAI (Remote‐RAG)</div>")
with gr.Row():
with gr.Column():
gr.Markdown("## πŸ“„ Document Input")
pdf_file = gr.File(label="Upload PDF", file_types=[".pdf"], type="filepath")
process_btn = gr.Button("πŸ“€ Process Document", variant="primary")
status_box = gr.Textbox(label="Status", interactive=False)
with gr.Column():
gr.Markdown("## ❓ Ask Questions")
question_input = gr.Textbox(lines=3,
placeholder="Enter your question here…")
ask_btn = gr.Button("πŸ” Ask Question", variant="primary")
answer_output = gr.Textbox(label="Answer", lines=8, interactive=False)
clear_btn = gr.Button("πŸ—‘οΈ Clear All", variant="secondary")
gr.Markdown("<div class='footer'>Powered by HF Inference + BLIP + FAISS | Gradio</div>")
process_btn.click(fn=process_pdf,
inputs=[pdf_file],
outputs=[status_box])
ask_btn.click(fn=ask_question,
inputs=[question_input],
outputs=[answer_output])
clear_btn.click(fn=clear_interface,
outputs=[status_box, answer_output])
if __name__ == "__main__":
demo.launch(debug=True, share=True)