Multimodal / app.py
Muzammil6376's picture
Update app.py
7133a05 verified
raw
history blame
5.9 kB
import os
import shutil
import PyPDF2
import gradio as gr
from PIL import Image
from typing import List
# Unstructured for rich PDF parsing
from unstructured.partition.pdf import partition_pdf
from unstructured.partition.utils.constants import PartitionStrategy
# Vision-language captioning (BLIP)
from transformers import BlipProcessor, BlipForConditionalGeneration
# Hugging Face Inference client
from huggingface_hub import InferenceClient
# LangChain vectorstore and embeddings
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
# ── Globals ───────────────────────────────────────────────────────────────────
retriever = None # FAISS retriever for multimodal content
current_pdf_name = None # Name of the currently loaded PDF
combined_texts: List[str] = [] # Combined text + image captions corpus
# ── Setup: directories ─────────────────────────────────────────────────────────
FIGURES_DIR = "figures"
if os.path.exists(FIGURES_DIR):
shutil.rmtree(FIGURES_DIR)
os.makedirs(FIGURES_DIR, exist_ok=True)
# ── Clients & Models ───────────────────────────────────────────────────────────
hf = InferenceClient() # uses HUGGINGFACEHUB_API_TOKEN env var
# BLIP captioner
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
def generate_caption(image_path: str) -> str:
"""Generate caption for image via BLIP."""
image = Image.open(image_path).convert("RGB")
inputs = blip_processor(image, return_tensors="pt")
out = blip_model.generate(**inputs)
return blip_processor.decode(out[0], skip_special_tokens=True)
def embed_texts(texts: List[str]) -> List[List[float]]:
"""Call HF inference embeddings endpoint."""
resp = hf.embeddings(model="google/Gemma-Embeddings-v1.0", inputs=texts)
return resp["embeddings"]
def process_pdf(pdf_file) -> str:
"""
Parse PDF, extract text and images, caption images,
embed all chunks remotely, build FAISS index.
"""
global retriever, current_pdf_name, combined_texts
if pdf_file is None:
return "❌ Please upload a PDF file."
pdf_path = pdf_file.name
current_pdf_name = os.path.basename(pdf_path)
# Attempt rich parsing
try:
from pdf2image.exceptions import PDFInfoNotInstalledError
elements = partition_pdf(
filename=pdf_path,
strategy=PartitionStrategy.HI_RES,
extract_image_block_types=["Image","Table"],
extract_image_block_output_dir=FIGURES_DIR,
)
text_elements = [el.text for el in elements if el.category not in ["Image","Table"] and el.text]
image_files = [os.path.join(FIGURES_DIR, f) for f in os.listdir(FIGURES_DIR)
if f.lower().endswith((".png",".jpg",".jpeg"))]
except Exception:
# Fallback to text-only
from pypdf import PdfReader
reader = PdfReader(pdf_path)
text_elements = [page.extract_text() or "" for page in reader.pages]
image_files = []
captions = [generate_caption(img) for img in image_files]
combined_texts = text_elements + captions
vectors = embed_texts(combined_texts)
index = FAISS.from_embeddings(texts=combined_texts, embeddings=vectors)
retriever = index.as_retriever(search_kwargs={"k":2})
return f"βœ… Indexed '{current_pdf_name}' β€” {len(text_elements)} text blocks + {len(captions)} image captions"
def ask_question(question: str) -> str:
"""Retrieve from FAISS and call chat completion."""
global retriever
if retriever is None:
return "❌ Please process a PDF first."
if not question.strip():
return "❌ Please enter a question."
docs = retriever.get_relevant_documents(question)
context = "\n\n".join(doc.page_content for doc in docs)
prompt = (
"Use the following excerpts to answer the question:\n\n"
f"{context}\n\nQuestion: {question}\nAnswer:"
)
response = hf.chat_completion(
model="google/gemma-3-27b-it",
messages=[{"role":"user","content":prompt}],
max_tokens=128,
temperature=0.5,
)
return response["choices"][0]["message"]["content"].strip()
def clear_interface():
"""Reset all state and clear extracted images."""
global retriever, current_pdf_name, combined_texts
retriever = None
current_pdf_name = None
combined_texts = []
shutil.rmtree(FIGURES_DIR, ignore_errors=True)
os.makedirs(FIGURES_DIR, exist_ok=True)
return ""
# Gradio UI
with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo", secondary_hue="blue")) as demo:
gr.Markdown("# DocQueryAI (Remote‐RAG)")
with gr.Row():
with gr.Column():
pdf_file = gr.File(file_types=[".pdf"], type="filepath")
process_btn = gr.Button("Process PDF")
status_box = gr.Textbox(interactive=False)
with gr.Column():
question_input = gr.Textbox(lines=3)
ask_btn = gr.Button("Ask")
answer_output = gr.Textbox(interactive=False)
clear_btn = gr.Button("Clear All")
process_btn.click(fn=process_pdf, inputs=[pdf_file], outputs=[status_box])
ask_btn.click(fn=ask_question, inputs=[question_input], outputs=[answer_output])
clear_btn.click(fn=clear_interface, outputs=[status_box, answer_output])
if __name__ == "__main__":
demo.launch()