File size: 3,487 Bytes
3fdd093
ecaa05c
67a56f6
3fdd093
 
67a56f6
3fdd093
 
 
 
 
ecaa05c
3fdd093
ced2810
40696fb
 
3fdd093
40696fb
 
225229c
3fdd093
cb3c155
 
40696fb
ecaa05c
 
 
3fdd093
cb3c155
40696fb
ecaa05c
 
 
dcc36ef
 
3fdd093
40696fb
3fdd093
 
40696fb
 
3fdd093
40696fb
3fdd093
 
cb3c155
dcc36ef
cb3c155
dcc36ef
 
3fdd093
 
 
40696fb
3fdd093
 
 
ae644bf
3fdd093
 
2a4ba68
3fdd093
 
 
 
 
 
40696fb
 
3fdd093
40696fb
d179e57
3fdd093
 
 
225229c
40696fb
3fdd093
2a4ba68
3fdd093
 
 
 
 
 
 
 
d179e57
3fdd093
 
 
40696fb
ced2810
 
cb3c155
d179e57
3fdd093
cb3c155
40696fb
3fdd093
cb3c155
3fdd093
 
d179e57
3fdd093
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# app.py

import os
from pathlib import Path

import gradio as gr
from PIL import Image
from huggingface_hub import InferenceClient

from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms import HuggingFaceEndpoint

from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate

from unstructured.partition.pdf import partition_pdf
from unstructured.partition.utils.constants import PartitionStrategy

# β€”β€”β€”β€”β€” Config & Folders β€”β€”β€”β€”β€”
PDF_DIR = Path("pdfs"); FIG_DIR = Path("figures")
PDF_DIR.mkdir(exist_ok=True); FIG_DIR.mkdir(exist_ok=True)

# β€”β€”β€”β€”β€” Read your HF_TOKEN secret β€”β€”β€”β€”β€”
hf_token = os.environ["HF_TOKEN"]

# β€”β€”β€”β€”β€” Embeddings & LLM Setup β€”β€”β€”β€”β€”
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")

llm = HuggingFaceEndpoint(
    endpoint_url="https://api-inference.huggingface.co/models/google/flan-t5-base",
    huggingfacehub_api_token=hf_token,
    temperature=0.5,
    max_length=512,
)

TEMPLATE = """
Use the following context to answer the question. If unknown, say so.
Context: {context}
Question: {question}
Answer (up to 3 sentences):
"""
prompt = PromptTemplate(template=TEMPLATE, input_variables=["context", "question"])

# β€”β€”β€”β€”β€” FIXED: correct keyword for InferenceClient β€”β€”β€”β€”β€”
vision_client = InferenceClient(
    model="Salesforce/blip-image-captioning-base",
    token=hf_token,
)

vector_store = None
qa_chain = None

def extract_image_caption(path: str) -> str:
    with Image.open(path) as img:
        return vision_client.image_to_text(img)

def process_pdf(pdf_file) -> str:
    global vector_store, qa_chain

    out_path = PDF_DIR / pdf_file.name
    with open(out_path, "wb") as f:
        f.write(pdf_file.read())

    elems = partition_pdf(
        str(out_path),
        strategy=PartitionStrategy.HI_RES,
        extract_image_block_types=["Image", "Table"],
        extract_image_block_output_dir=str(FIG_DIR),
    )

    texts = [el.text for el in elems if el.category not in ("Image", "Table")]
    for img_file in FIG_DIR.iterdir():
        texts.append(extract_image_caption(str(img_file)))

    splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
    docs = splitter.split_text("\n\n".join(texts))

    vector_store = FAISS.from_texts(docs, embedding_model)
    qa_chain = RetrievalQA.from_chain_type(
        llm=llm,
        retriever=vector_store.as_retriever(),
        chain_type_kwargs={"prompt": prompt},
    )

    return f"βœ… Processed `{pdf_file.name}` into {len(docs)} chunks."

def answer_query(question: str) -> str:
    if qa_chain is None:
        return "❗ Please upload and process a PDF first."
    return qa_chain.run(question)

with gr.Blocks() as demo:
    gr.Markdown("## πŸ“„πŸ“· Multimodal RAG β€” HF Spaces")
    with gr.Row():
        pdf_in = gr.File(label="Upload PDF", type="file")
        btn_proc = gr.Button("Process PDF"); status = gr.Textbox(label="Status")
    with gr.Row():
        q_in = gr.Textbox(label="Your Question")
        btn_ask = gr.Button("Ask"); ans_out = gr.Textbox(label="Answer")
    btn_proc.click(fn=process_pdf, inputs=pdf_in, outputs=status)
    btn_ask.click(fn=answer_query, inputs=q_in, outputs=ans_out)

if __name__ == "__main__":
    demo.launch()