Spaces:
Sleeping
Sleeping
Commit
·
1c49f74
1
Parent(s):
d3a8b6d
added inference model
Browse files
app.py
CHANGED
@@ -1,7 +1,94 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import lightning as pl
|
5 |
+
import gradio as gr
|
6 |
+
from PIL import Image
|
7 |
+
from torchvision import transforms
|
8 |
+
from data import LitMNISTDataModule
|
9 |
+
from config import CONFIG
|
10 |
+
from model import LitMNISTModel
|
11 |
+
from timeit import default_timer as timer
|
12 |
+
|
13 |
+
torch.set_float32_matmul_precision('medium')
|
14 |
+
torch.cuda.amp.autocast(enabled=True)
|
15 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
16 |
+
torch.set_default_device( device= device )
|
17 |
+
|
18 |
+
|
19 |
+
pl.seed_everything(123, workers=True)
|
20 |
+
|
21 |
+
TEST_TRANSFORMS = transforms.Compose([
|
22 |
+
# transforms.PILToTensor(),
|
23 |
+
# transforms.Resize((28, 28)),
|
24 |
+
transforms.ToTensor(),
|
25 |
+
transforms.Normalize((0.1307,), (0.3081,))
|
26 |
+
])
|
27 |
+
|
28 |
+
## MNISTDataModule
|
29 |
+
dm = LitMNISTDataModule(
|
30 |
+
data_dir=CONFIG['data'].get('dir_path','.'),
|
31 |
+
batch_size= CONFIG.get('batch_size'),
|
32 |
+
num_workers=CONFIG.get('num_workers'),
|
33 |
+
test_transform=TEST_TRANSFORMS,
|
34 |
+
train_transform=None
|
35 |
+
)
|
36 |
+
dm.prepare_data()
|
37 |
+
dm.setup('test')
|
38 |
+
|
39 |
+
## MNISTModel
|
40 |
+
# model = LitMNISTModel()
|
41 |
+
chkpoint_path = os.path.join( os.path.dirname(__file__),'logs','chkpoints','epoch=13.ckpt' )
|
42 |
+
model = LitMNISTModel.load_from_checkpoint(chkpoint_path)
|
43 |
+
|
44 |
+
|
45 |
+
trainer = pl.Trainer(
|
46 |
+
fast_dev_run=True,
|
47 |
+
precision=32,
|
48 |
+
enable_model_summary=False,
|
49 |
+
enable_progress_bar=False,
|
50 |
+
)
|
51 |
+
|
52 |
+
# trainer.test(model,datamodule=dm)
|
53 |
+
|
54 |
+
|
55 |
+
# for X,y in dm.test_dataloader():
|
56 |
+
# for i in range(X.shape[0]):
|
57 |
+
# plt.imsave(
|
58 |
+
# fname=os.path.join('numbers',f'img_{i}.png'),
|
59 |
+
# arr=np.clip(
|
60 |
+
# torch.stack(
|
61 |
+
# [X[i,...],X[i,...],X[i,...]],
|
62 |
+
# dim=1
|
63 |
+
# ).squeeze(0).permute(1,2,0).detach().cpu().contiguous().numpy(),0,1))
|
64 |
+
# break
|
65 |
+
|
66 |
+
|
67 |
+
def predict_fn(img:Image):
|
68 |
+
start_time = timer()
|
69 |
+
try:
|
70 |
+
img = np.array(img)
|
71 |
+
img = TEST_TRANSFORMS(img)
|
72 |
+
img = img.mean(dim=0).unsqueeze(0).unsqueeze(0).to(model.device)
|
73 |
+
y_preds = model.predict_step( img)
|
74 |
+
res = {f"Title: {y_preds['predict'][0]}": y_preds['prob'][0]}
|
75 |
+
pred_time = round(timer() - start_time, 5)
|
76 |
+
return(res, pred_time)
|
77 |
+
except Exception as e:
|
78 |
+
gr.Error("An error occured 💥!", duration=5)
|
79 |
+
return ({ f"Title ☠️": 0.0},0.0)
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
gr.Interface(
|
85 |
+
fn=predict_fn,
|
86 |
+
inputs=gr.Image(type='pil'),
|
87 |
+
outputs=[
|
88 |
+
gr.Label(num_top_classes=1, label="Predictions"), # what are the outputs?
|
89 |
+
gr.Number(label="Prediction time (s)")
|
90 |
+
],
|
91 |
+
examples=[ ['numbers/'+i] for i in os.listdir(os.path.join( os.path.dirname(__file__) ,'numbers'))]
|
92 |
+
).launch(share=False,debug=False)
|
93 |
|
|
|
|
|
94 |
|
|
|
|