File size: 3,088 Bytes
7c9474f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import torch
from torch import nn 
from torch.nn import functional as F

from typing import Any,List,Tuple,Dict


class Net(nn.Module):
    def __init__(self,config:Dict):
        super(Net,self).__init__()

        DROPOUT= config.get('dropout_rate',0.01)
        BIAS   = config.get('bias',False)
        
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channels=1,out_channels=8,kernel_size=3,stride=1,padding=1,bias=BIAS),
            nn.ReLU(),
            nn.BatchNorm2d(8),
            nn.Dropout2d(p=DROPOUT),
            
            nn.Conv2d(in_channels=8,out_channels=10,kernel_size=3,stride=1,padding=1,bias=BIAS),
            nn.ReLU(),
            nn.BatchNorm2d(10),
            nn.Dropout2d(p=DROPOUT),

            nn.Conv2d(in_channels=10,out_channels=10,kernel_size=3,stride=1,padding=1,bias=BIAS),
            nn.ReLU(),
            nn.BatchNorm2d(10),
            nn.Dropout2d(p=DROPOUT),
        )
        self.trans1 = nn.Sequential(

            nn.MaxPool2d( kernel_size =2 , stride =2 , padding =1 ),
            nn.Conv2d(in_channels=10,out_channels=8,kernel_size=1,bias=BIAS,padding=1),
        )

        self.conv2 =nn.Sequential(
            nn.Conv2d(in_channels=8,out_channels=10,kernel_size=3,stride=1,padding=1,bias=BIAS),
            nn.BatchNorm2d(10),
            nn.ReLU(),
            nn.Dropout2d(p=DROPOUT),


            nn.Conv2d(in_channels=10,out_channels=12,kernel_size=3,stride=1,padding=1,bias=BIAS),
            nn.BatchNorm2d(12),
            nn.ReLU(),
            nn.Dropout2d(p=DROPOUT),

            nn.Conv2d(in_channels=12,out_channels=12,kernel_size=3,stride=1,padding=1,bias=BIAS),
            nn.BatchNorm2d(12),
            nn.ReLU(),
            nn.Dropout2d(p=DROPOUT),
        )
        self.trans2 = nn.Sequential(
            nn.MaxPool2d( kernel_size =2 , stride =2 , padding =1 ),
            nn.Conv2d(in_channels=12,out_channels=8,kernel_size=1,bias=BIAS),
            nn.BatchNorm2d(8),
        )

        self.conv3 = nn.Sequential(
            nn.Conv2d(in_channels=8,out_channels=10,kernel_size=3,stride=1,padding=1,bias=BIAS),
            nn.BatchNorm2d(10),
            nn.ReLU(),
            nn.Dropout2d(p=DROPOUT),
            
            nn.Conv2d(in_channels=10,out_channels=12,kernel_size=3,stride=1,padding=1,bias=BIAS),
            nn.ReLU(),
            nn.BatchNorm2d(12),
            nn.Dropout2d(p=DROPOUT),

        )
        self.trans3 = nn.Sequential(
            nn.Conv2d(in_channels=12,out_channels=10,kernel_size=1,bias=BIAS),
            nn.MaxPool2d( kernel_size =2 , stride =2 , padding =0 ),
            nn.BatchNorm2d(10),
        )

        self.out4 = nn.Sequential(
            nn.Conv2d(in_channels=10 ,out_channels=10, kernel_size=3,stride=1,padding=1,bias=BIAS),
            nn.AvgPool2d(kernel_size=3)  #(1*1*10)
        )


    def forward(self,x):
        x = self.trans1( self.conv1(x) )
        x = self.trans2( self.conv2(x) )
        x = self.trans3( self.conv3(x) )
        x = self.out4(x)
        x = x.view(-1,10)
        return F.log_softmax(x,dim=1)