File size: 5,661 Bytes
7c9474f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from typing import Any,List,Tuple,Dict

import torch
from torch import nn 
from torch.nn import functional as F
from torchvision.utils import make_grid
from torch.optim import Optimizer,Adam,SGD
from lightning import LightningModule
from torchmetrics import Accuracy,F1Score,AUROC,ConfusionMatrix


device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
torch.set_default_device( device= device  )



from .mnist_model import Net

__all__: List[str] = ["LitMNISTModel"]

class LitMNISTModel(LightningModule):
    def __init__(
            self, 
            learning_rate:float = 3e-4,
            num_classes:int = 10,
            dropout_rate:float=0.01,
            bias:bool=False,
            momentum:float =.9,
            *args: Any, 
            **kwargs: Any
    ) -> None:
        super().__init__()
        self.save_hyperparameters()
        
        self.learning_rate:float = learning_rate
        self.num_class:int       = num_classes
        self.momentum:float      = momentum

        # metric
        ## Accuracy
        self.train_accuracy = Accuracy(task="multiclass", num_classes=num_classes)
        self.val_accuracy   = Accuracy(task="multiclass", num_classes=num_classes)
        self.test_accuracy   = Accuracy(task="multiclass", num_classes=num_classes)

        ## F1 Score
        self.train_f1 = F1Score(task="multiclass", num_classes=num_classes)
        self.val_f1   = F1Score(task="multiclass", num_classes=num_classes)
        self.test_f1   = F1Score(task="multiclass", num_classes=num_classes)

        ## Model
        self.model = Net(config={'dropout_rate':dropout_rate, 'bias':bias})
        

    def forward(self, x) -> Any:
        return self.model(x)
    

    def training_step(self, batch,batch_idx, *args: Any, **kwargs: Any) -> torch.Tensor:
        x,y = batch 
        logits = self(x)
        loss = F.nll_loss(logits,y)
        preds = torch.argmax(logits,dim=1)
        acc = self.train_accuracy(preds,y)
        f1  = self.train_f1(preds,y)

        self.log("train/loss",loss,prog_bar=True,on_epoch=True,on_step=True,logger=self.trainer.logger)
        self.log("train/acc",acc,prog_bar=True,on_epoch=False,on_step=True,logger=self.trainer.logger)
        self.log("train/train_f1",f1,prog_bar=True,on_epoch=False,on_step=True,logger=self.trainer.logger)
        
        if batch_idx==0:
            grid = make_grid(x)
            self.logger.experiment.add_image("train_imgs",grid,self.current_epoch)

        return {
            'loss':loss,
            'logits':logits,
            'preds':preds
        }
    

    def validation_step(self,batch,batch_idx, *args: Any, **kwargs: Any) -> torch.Tensor :
        x,y = batch
        logits = self(x)
        loss = F.nll_loss(logits,y)
        preds = torch.argmax(logits,dim=1)
        acc = self.val_accuracy(preds,y)
        f1  = self.val_f1(preds,y)

        self.log("val/loss",loss,prog_bar=True,on_epoch=True,on_step=True,logger=self.trainer.logger)
        self.log("val/acc",acc,prog_bar=True,on_epoch=True,on_step=True,logger=self.trainer.logger)
        self.log("val/val_f1",f1,prog_bar=True,on_epoch=True,on_step=False,logger=self.trainer.logger)
        
        if batch_idx==0:
            grid = make_grid(x)
            self.logger.experiment.add_image("val_imgs",grid,self.current_epoch)

        return {
            'loss':loss,
            'logits':logits,
            'preds':preds
        }
    
    def predict_step(self,x:torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
        with torch.no_grad():
            logits = self(x)
            probs,indices = torch.max( F.softmax(logits,dim=1), dim=1)
            return {
                'prob':probs,
                'predict':indices
            }
    

    def test_step(self,batch):
        x,y = batch
        logits = self(x)
        loss = F.nll_loss(logits,y)
        preds = torch.argmax(logits,dim=1)
        acc = self.test_accuracy(preds,y)
        f1  = self.test_f1(preds,y)

        self.log("test/loss",loss,prog_bar=True,on_epoch=True,on_step=True,logger=self.trainer.logger)
        self.log("test/acc",acc,prog_bar=True,on_epoch=True,on_step=True,logger=self.trainer.logger)
        self.log("test/test_f1",f1,prog_bar=True,on_epoch=True,on_step=False,logger=self.trainer.logger)
        

        return {
            'loss':loss,
            'logits':logits,
            'preds':preds
        }

    def configure_optimizers(self):
        # optimizer = SGD(self.parameters(),lr=self.learning_rate,momentum=self.momentum)
        # Reduce LR ON Plateau
        # scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer=optimizer,factor=.1,patience=2,verbose=True)
        # return {
        #     "optimizer": optimizer, 
        #     "lr_scheduler": scheduler, 
        #     "monitor": 'val/loss',
        #     'interval':'step',
        #     "frequency": 15
        # }
        optimizer = Adam(self.parameters(),lr=1e3)
        scheduler = torch.optim.lr_scheduler.OneCycleLR(
                                    optimizer=optimizer,
                                    max_lr=1e2*self.learning_rate,
                                    total_steps=self.trainer.estimated_stepping_batches,
                                    pct_start=.3,
                                    cycle_momentum=True,
                                    div_factor =100,
                                    final_div_factor = 1e10,
                                    verbose = False,
                                    three_phase=True
                                    )
        return ([optimizer],[scheduler])