import os import torch import numpy as np import lightning as pl import gradio as gr from PIL import Image from torchvision import transforms from timeit import default_timer as timer from torch.nn import functional as F torch.set_float32_matmul_precision('medium') device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') torch.set_default_device( device= device ) torch.autocast(enabled = True,dtype='float16',device_type='cuda') pl.seed_everything(123, workers=True) TEST_TRANSFORMS = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) class_labels= ['Beagle', 'Boxer', 'Bulldog', 'Dachshund', 'German_Shepherd', 'Golden_Retriever','Labrador_Retriever', 'Poodle','Rottweiler','Yorkshire_Terrier'] # Model if device=='cuda': model = torch.jit.load('best_model.pt').to(device) else: model=torch.load('best_model.pt') @torch.no_grad() def predict_fn(img:Image): start_time = timer() try: # img = np.array(img) # print(img) img = TEST_TRANSFORMS(img).to(device) # print(type(img),img.shape) logits = model(img.unsqueeze(0)) probabilities = F.softmax(logits,dim=-1) # print(torch.topk(probabilities,k=2)) y_pred = probabilities.argmax(dim=-1).item() confidence = probabilities[0][y_pred].item() predicted_label = class_labels[y_pred] # print(confidence,predicted_label) pred_time = round(timer()-start_time,5) res = {f"Title: {predicted_label}":confidence} return (res,pred_time) except Exception as e: print(f"error:: {e}") gr.Error("An error occured 💥!", duration=5) return ({ f"Title ☠️": 0.0},0.0) gr.Interface( fn=predict_fn, inputs=gr.Image(type='pil'), outputs=[ gr.Label(num_top_classes=1, label="Predictions"), # what are the outputs? gr.Number(label="Prediction time (s)") ], examples=[ ['examples/'+i] for i in os.listdir(os.path.join( os.path.dirname(__file__) ,'examples'))], title="Dog Breeds Classifier 🐈", description="CNN-based Architecture for Fast and Accurate DogsBreed Classifier", article="Created by muthukamalan.m ❤️", cache_examples=True, ).launch(share=False,debug=False)