import os import torch import lightning as pl import gradio as gr from PIL import Image from torchvision import transforms from timeit import default_timer as timer from torch.nn import functional as F torch.set_float32_matmul_precision('medium') device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') torch.set_default_device(device=device) torch.autocast(enabled=True, dtype='float16', device_type='cuda') pl.seed_everything(123, workers=True) TEST_TRANSFORMS = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) class_labels = [ 'Beagle', 'Boxer', 'Bulldog', 'Dachshund', 'German_Shepherd', 'Golden_Retriever', 'Labrador_Retriever', 'Poodle', 'Rottweiler', 'Yorkshire_Terrier', ] # Model model = torch.jit.load('best_model.pt', map_location=device).to(device) @torch.no_grad() def predict_fn(img: Image): start_time = timer() try: # img = np.array(img) # print(img) img = TEST_TRANSFORMS(img).to(device) # print(type(img),img.shape) logits = model(img.unsqueeze(0)) probabilities = F.softmax(logits, dim=-1) # print(torch.topk(probabilities,k=2)) y_pred = probabilities.argmax(dim=-1).item() confidence = probabilities[0][y_pred].item() predicted_label = class_labels[y_pred] # print(confidence,predicted_label) pred_time = round(timer() - start_time, 5) res = {f'Title: {predicted_label}': confidence} return (res, pred_time) except Exception as e: print(f'error:: {e}') gr.Error('An error occured 💥!', duration=5) return ({'Title ☠️': 0.0}, 0.0) gr.Interface( fn=predict_fn, inputs=gr.Image(type='pil'), outputs=[ gr.Label(num_top_classes=1, label='Predictions'), # what are the outputs? gr.Number(label='Prediction time (s)'), ], examples=[ ['examples/' + i] for i in os.listdir(os.path.join(os.path.dirname(__file__), 'examples')) ], title='Dog Breeds Classifier 🐈', description='CNN-based Architecture for Fast and Accurate DogsBreed Classifier', article='Created by muthukamalan.m ❤️', cache_examples=True, ).launch(share=False, debug=False)