Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import gradio as gr | |
from PIL import Image | |
from torchvision import transforms | |
from timeit import default_timer as timer | |
from torch.nn import functional as F | |
from gradio.flagging import SimpleCSVLogger | |
torch.set_float32_matmul_precision("medium") | |
# device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
device = torch.device("cpu") | |
torch.set_default_device(device=device) | |
# torch.autocast(enabled=True, dtype="float16", device_type="cuda") | |
TEST_TRANSFORMS = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
]) | |
class_labels = [ | |
"Beagle", | |
"Boxer", | |
"Bulldog", | |
"Dachshund", | |
"German_Shepherd", | |
"Golden_Retriever", | |
"Labrador_Retriever", | |
"Poodle", | |
"Rottweiler", | |
"Yorkshire_Terrier", | |
] | |
# Model | |
model:torch.nn.Module = torch.jit.load("best_model.pt", map_location=device).to(device) | |
def predict_fn(img: Image): | |
start_time = timer() | |
try: | |
# img = np.array(img) | |
# print(img) | |
img = TEST_TRANSFORMS(img).to(device) | |
# print(type(img),img.shape) | |
logits = model(img.unsqueeze(0)) | |
probabilities = F.softmax(logits, dim=-1) | |
# print(torch.topk(probabilities,k=2)) | |
y_pred = probabilities.argmax(dim=-1).item() | |
confidence = probabilities[0][y_pred].item() | |
predicted_label = class_labels[y_pred] | |
# print(confidence,predicted_label) | |
pred_time = round(timer() - start_time, 5) | |
res = {f"Title: {predicted_label}": confidence} | |
return (res, pred_time) | |
except Exception as e: | |
print(f"error:: {e}") | |
gr.Error("An error occured 💥!", duration=5) | |
return ({"Title ☠️": 0.0}, 0.0) | |
gr.Interface( | |
fn=predict_fn, | |
inputs=gr.Image(type="pil"), | |
outputs=[ | |
gr.Label(num_top_classes=1, label="Predictions"), # what are the outputs? | |
gr.Number(label="Prediction time (s)"), | |
], | |
examples=[ | |
["examples/" + i] | |
for i in os.listdir(os.path.join(os.path.dirname(__file__), "examples")) | |
], | |
title="Dog Breeds Classifier 🐈", | |
description="CNN-based Architecture for Fast and Accurate DogsBreed Classifier", | |
article="Created by muthukamalan.m ❤️", | |
cache_examples=True, | |
flagging_options=[], | |
flagging_callback=SimpleCSVLogger() | |
).launch(share=False, debug=False,server_name="0.0.0.0",server_port=7860,enable_monitoring=None) | |