Spaces:
Sleeping
Sleeping
Commit
Β·
3ff9a31
1
Parent(s):
fece87d
application file
Browse files- README.md +165 -7
- app.py +124 -0
- assets/duck.jpeg +0 -0
- assets/horse.jpeg +0 -0
- contents/bert-model.png +0 -0
- contents/clip_model.png +0 -0
- contents/cool-clip-nvitop.png +0 -0
- contents/cool-clip.png +0 -0
- contents/fit-report.png +0 -0
- contents/resnet.png +0 -0
- features.npy +3 -0
- photo_ids.csv +0 -0
- photos.tsv000 +0 -0
- requirements.txt +5 -0
README.md
CHANGED
@@ -1,14 +1,172 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
-
short_description: experiment to train clip based models
|
12 |
---
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: CoolCLIP
|
3 |
+
emoji: π¦
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: midnight-blue
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.44.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
|
|
11 |
---
|
12 |
|
13 |
+
|
14 |
+
# CLIP
|
15 |
+
|
16 |
+
In early days of transformers starts dominating (ViTs) comes **Contrastive LanguageβImage Pre-training** ([CLIP](https://github.com/openai/CLIP)-2021) is a powerful neural network model that learns to associate textual descriptions with images.
|
17 |
+
|
18 |
+
|
19 |
+
# Dataset
|
20 |
+
The experiment are performed on [kaggle dataset](https://www.kaggle.com/datasets/adityajn105/flickr8k)
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
## APPROACH
|
27 |
+

|
28 |
+
|
29 |
+
*Image Encoder* may or maynot comes with CNN backbone process image
|
30 |
+
- resnet
|
31 |
+
- densenet
|
32 |
+
|
33 |
+
*Text Encoder*
|
34 |
+
- bert
|
35 |
+
- distilbert
|
36 |
+
|
37 |
+
|
38 |
+
## Text Encoder
|
39 |
+
captions were tokenized by `DistilBert`
|
40 |
+
|
41 |
+
```python
|
42 |
+
tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
|
43 |
+
tokenizer( list(captions), padding=True, truncation=True, max_length=200 )
|
44 |
+
text_model = .model = DistilBertModel.from_pretrained("distilbert-base-uncased")
|
45 |
+
```
|
46 |
+
|
47 |
+
<!-- <div align='center'><img src='./contents/bert-model.png' alt=""></div> -->
|
48 |
+
<div align='center'><img src='https://raw.githubusercontent.com/Muthukamalan/CoolCLIP-/refs/heads/main/gradio/contents/bert-model.png' alt=""></div>
|
49 |
+
|
50 |
+
|
51 |
+
## Image Encoder
|
52 |
+
transforms help to standardise the image and pass to the model
|
53 |
+
|
54 |
+
```python
|
55 |
+
def get_transforms(mode="train"):
|
56 |
+
if mode == "train":
|
57 |
+
return A.Compose(
|
58 |
+
[
|
59 |
+
A.Resize(224, 224, always_apply=True),
|
60 |
+
A.Normalize(max_pixel_value=255.0, always_apply=True),
|
61 |
+
]
|
62 |
+
)
|
63 |
+
else:
|
64 |
+
return A.Compose(
|
65 |
+
[
|
66 |
+
A.Resize(224, 224, always_apply=True),
|
67 |
+
A.Normalize(max_pixel_value=255.0, always_apply=True),
|
68 |
+
]
|
69 |
+
)
|
70 |
+
```
|
71 |
+
pretrained `resnet` model
|
72 |
+
```python
|
73 |
+
image_model = timm.create_model( 'resnet18', pretrained, num_classes=0, global_pool="avg" )
|
74 |
+
```
|
75 |
+
<div align='center'><img src='https://raw.githubusercontent.com/Muthukamalan/CoolCLIP-/refs/heads/main/gradio/contents/resnet.png' alt=""></div>
|
76 |
+
|
77 |
+
|
78 |
+
## Projection Head
|
79 |
+
|
80 |
+
Sometimes, `output_image_embedding` won't be same dimension as `output_text_embedding` to make it same dimension it act as adapters.
|
81 |
+
It follow simple residual block with non-linear activations
|
82 |
+
|
83 |
+
```python
|
84 |
+
class ProjectionHead(nn.Module):
|
85 |
+
def __init__(
|
86 |
+
self,
|
87 |
+
embedding_dim,
|
88 |
+
projection_dim=256,
|
89 |
+
dropout=CFG.dropout
|
90 |
+
):
|
91 |
+
super().__init__()
|
92 |
+
self.projection = nn.Linear(embedding_dim, projection_dim)
|
93 |
+
self.gelu = nn.GELU()
|
94 |
+
self.fc = nn.Linear(projection_dim, projection_dim)
|
95 |
+
self.dropout = nn.Dropout(dropout)
|
96 |
+
self.layer_norm = nn.LayerNorm(projection_dim)
|
97 |
+
|
98 |
+
def forward(self, x):
|
99 |
+
projected = self.projection(x)
|
100 |
+
x = self.gelu(projected)
|
101 |
+
x = self.fc(x)
|
102 |
+
x = self.dropout(x)
|
103 |
+
x = x + projected
|
104 |
+
x = self.layer_norm(x)
|
105 |
+
return x
|
106 |
+
```
|
107 |
+
|
108 |
+
|
109 |
+
## CLIP Model
|
110 |
+
Combines Image and Text model by adapters and make it understandable.
|
111 |
+
|
112 |
+
```python
|
113 |
+
class CLIPModel(pl.LightningModule):
|
114 |
+
def __init__(image_embedding,text_embedding) -> None:
|
115 |
+
super().__init__()
|
116 |
+
self.image_encoder = ImageEncoder()
|
117 |
+
self.text_encoder = TextEncoder()
|
118 |
+
self.image_projection = ProjectionHead(embedding_dim=image_embedding)
|
119 |
+
self.text_projection = ProjectionHead(embedding_dim=text_embedding)
|
120 |
+
|
121 |
+
def forward(batch):
|
122 |
+
image_features = self.image_encoder(batch["image"])
|
123 |
+
text_features = self.text_encoder( input_ids=batch["input_ids"], attention_mask=batch["attention_mask"] )
|
124 |
+
image_embeddings = self.image_projection(image_features)
|
125 |
+
text_embeddings = self.text_projection(text_features)
|
126 |
+
|
127 |
+
# Calculating the Loss
|
128 |
+
logits = (text_embeddings @ image_embeddings.T) / self.temperature
|
129 |
+
images_similarity = image_embeddings @ image_embeddings.T
|
130 |
+
texts_similarity = text_embeddings @ text_embeddings.T
|
131 |
+
targets = F.softmax( (images_similarity + texts_similarity) / 2 * self.temperature, dim=-1 )
|
132 |
+
texts_loss = cross_entropy(logits, targets, reduction='none')
|
133 |
+
images_loss = cross_entropy(logits.T, targets.T, reduction='none')
|
134 |
+
loss = (images_loss + texts_loss) / 2.0 # shape: (batch_size)
|
135 |
+
return loss.mean()
|
136 |
+
```
|
137 |
+
|
138 |
+
## Model Summary
|
139 |
+
```log
|
140 |
+
| Name | Type | Params | Mode
|
141 |
+
------------------------------------------------------------
|
142 |
+
0 | image_encoder | ImageEncoder | 11.2 M | train
|
143 |
+
1 | text_encoder | TextEncoder | 66.4 M | train
|
144 |
+
2 | image_projection | ProjectionHead | 197 K | train
|
145 |
+
3 | text_projection | ProjectionHead | 263 K | train
|
146 |
+
------------------------------------------------------------
|
147 |
+
78.0 M Trainable params
|
148 |
+
0 Non-trainable params
|
149 |
+
78.0 M Total params
|
150 |
+
312.001 Total estimated model params size (MB)
|
151 |
+
200 Modules in train mode
|
152 |
+
0 Modules in eval mode
|
153 |
+
```
|
154 |
+
|
155 |
+
## Training
|
156 |
+
- nvitop
|
157 |
+
<!--  -->
|
158 |
+
<div align='center'><img src='https://raw.githubusercontent.com/Muthukamalan/CoolCLIP-/refs/heads/main/gradio/contents/cool-clip-nvitop.png' alt=""></div>
|
159 |
+
|
160 |
+
- htop
|
161 |
+
<!--  -->
|
162 |
+
<div align='center'><img src='https://raw.githubusercontent.com/Muthukamalan/CoolCLIP-/refs/heads/main/gradio/contents/cool-clip.png' alt=""></div>
|
163 |
+
|
164 |
+
- training
|
165 |
+
<!--  -->
|
166 |
+
<div align='center'><img src='https://raw.githubusercontent.com/Muthukamalan/CoolCLIP-/refs/heads/main/gradio/contents/fit-report.png' alt=""></div>
|
167 |
+
|
168 |
+
|
169 |
+
# Inference
|
170 |
+
## GRADIO APP
|
171 |
+
<div align='center'><img src='https://raw.githubusercontent.com/Muthukamalan/CoolCLIP-/refs/heads/main/gradio/contents/clip_model.png' alt=""></div>
|
172 |
+
<!-- <div><img align='center' src="./contents/clip_model.png" ></img></div> -->
|
app.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
#Importing all the necessary libraries
|
4 |
+
import torch
|
5 |
+
import requests
|
6 |
+
import numpy as np
|
7 |
+
import pandas as pd
|
8 |
+
import gradio as gr
|
9 |
+
from io import BytesIO
|
10 |
+
from PIL import Image as PILIMAGE
|
11 |
+
|
12 |
+
from transformers import CLIPProcessor, CLIPModel, CLIPTokenizer
|
13 |
+
from sentence_transformers import SentenceTransformer, util
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
+
|
19 |
+
# Define model
|
20 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
|
21 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
22 |
+
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
23 |
+
|
24 |
+
# Load data
|
25 |
+
photos = pd.read_csv("./photos.tsv000", sep='\t', header=0)
|
26 |
+
photo_features = np.load("./features.npy")
|
27 |
+
photo_ids = pd.read_csv("./photo_ids.csv")
|
28 |
+
photo_ids = list(photo_ids['photo_id'])
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
def encode_text(text):
|
33 |
+
with torch.no_grad():
|
34 |
+
# Encode and normalize the description using CLIP
|
35 |
+
inputs = tokenizer([text], padding=True, return_tensors="pt")
|
36 |
+
inputs = processor(text=[text], images=None, return_tensors="pt", padding=True).to(device=device)
|
37 |
+
text_encoded = model.get_text_features(**inputs).detach().cpu().numpy()
|
38 |
+
return text_encoded
|
39 |
+
|
40 |
+
def encode_image(image):
|
41 |
+
image = PILIMAGE.fromarray(image.astype('uint8'), 'RGB')
|
42 |
+
with torch.no_grad():
|
43 |
+
photo_preprocessed = processor(text=None, images=image, return_tensors="pt", padding=True)["pixel_values"]
|
44 |
+
search_photo_feature = model.get_image_features(photo_preprocessed.to(device))
|
45 |
+
search_photo_feature /= search_photo_feature.norm(dim=-1, keepdim=True)
|
46 |
+
image_encoded = search_photo_feature.cpu().numpy()
|
47 |
+
return image_encoded
|
48 |
+
|
49 |
+
T2I = "Text2Image"
|
50 |
+
I2I = "Image2Image"
|
51 |
+
|
52 |
+
def similarity(feature, photo_features):
|
53 |
+
similarities = list((feature @ photo_features.T).squeeze(0))
|
54 |
+
return similarities
|
55 |
+
|
56 |
+
def find_best_matches(image, mode, text):
|
57 |
+
# Compute the similarity between the description and each photo using the Cosine similarity
|
58 |
+
print ("Mode now ",mode)
|
59 |
+
|
60 |
+
if mode == "Text2Image":
|
61 |
+
# Encode the text input
|
62 |
+
text_features = encode_text(text)
|
63 |
+
feature = text_features
|
64 |
+
similarities = similarity(text_features, photo_features)
|
65 |
+
|
66 |
+
|
67 |
+
else:
|
68 |
+
#Encode the image input
|
69 |
+
image_features = encode_image(image)
|
70 |
+
feature = image_features
|
71 |
+
similarities = similarity(image_features, photo_features)
|
72 |
+
|
73 |
+
# Sort the photos by their similarity score
|
74 |
+
best_photos = sorted(zip(similarities, range(photo_features.shape[0])), key=lambda x: x[0], reverse=True)
|
75 |
+
|
76 |
+
matched_images = []
|
77 |
+
for i in range(3):
|
78 |
+
# Retrieve the photo ID
|
79 |
+
idx = best_photos[i][1]
|
80 |
+
photo_id = photo_ids[idx]
|
81 |
+
|
82 |
+
# Get all metadata for this photo
|
83 |
+
photo_data = photos[photos["photo_id"] == photo_id].iloc[0]
|
84 |
+
|
85 |
+
# Display the images
|
86 |
+
#display(Image(url=photo_data["photo_image_url"] + "?w=640"))
|
87 |
+
response = requests.get(photo_data["photo_image_url"] + "?w=640")
|
88 |
+
img = PILIMAGE.open(BytesIO(response.content))
|
89 |
+
matched_images.append(img)
|
90 |
+
return matched_images
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
demo = gr.Interface(
|
96 |
+
fn=find_best_matches,
|
97 |
+
inputs=[
|
98 |
+
gr.Image(label="Image to search",),# optional=True
|
99 |
+
gr.Radio([T2I, I2I]),
|
100 |
+
gr.Textbox(lines=1, label="Text query", placeholder="Introduce the search text...",)
|
101 |
+
],
|
102 |
+
theme="grass",
|
103 |
+
outputs=[
|
104 |
+
gr.Gallery(label="Generated images", show_label=False, elem_id="gallery")
|
105 |
+
],
|
106 |
+
title="CLIP Search",
|
107 |
+
description="This application displays TOP THREE images from Unsplash dataset that best match the search query provided by the user from (25k images-db). Moreover, the input can be provided via two modes ie text or image form.",
|
108 |
+
examples=[
|
109 |
+
["./assets/duck.jpeg","Image2Image", None] ,
|
110 |
+
[None, "Text2Image", "Planet Earth"],
|
111 |
+
["./assets/horse.jpeg", "Text2Image", "Horse"]
|
112 |
+
|
113 |
+
]
|
114 |
+
)
|
115 |
+
|
116 |
+
|
117 |
+
with open("README.md", "r+") as file:
|
118 |
+
readme_content = file.read()
|
119 |
+
# πβ½ππΎπ€Έ
|
120 |
+
readme =gr.Interface( fn = None, inputs=None, outputs=gr.Markdown(readme_content[150:]),clear_btn=None, css="footer{display:none !important}",flagging_options=[],show_progress='hidden',title="") #gr.Interface(lambda name: "Bye " + name, "text", "text")#
|
121 |
+
|
122 |
+
|
123 |
+
app = gr.TabbedInterface([demo, readme ],tab_names=["CoolCLIP π¦","README"])
|
124 |
+
app.launch(debug=False,)
|
assets/duck.jpeg
ADDED
![]() |
assets/horse.jpeg
ADDED
![]() |
contents/bert-model.png
ADDED
![]() |
contents/clip_model.png
ADDED
![]() |
contents/cool-clip-nvitop.png
ADDED
![]() |
contents/cool-clip.png
ADDED
![]() |
contents/fit-report.png
ADDED
![]() |
contents/resnet.png
ADDED
![]() |
features.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:31ac381e52fa007821a642b5808ac9a6eaf7163322ab340d36bcc3c2a94a38c8
|
3 |
+
size 25596032
|
photo_ids.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
photos.tsv000
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
sentence-transformers
|
2 |
+
transformers
|
3 |
+
torch
|
4 |
+
numpy
|
5 |
+
ftfy
|