import torch from torch.utils.data import DataLoader, random_split from torchvision import transforms, datasets import lightning as pl class CIFAR10DataModule(pl.LightningDataModule): def __init__(self, data_dir: str = r'/home/muthu/GitHub/DATA 📁/CIFAR', batch_size: int = 32, num_workers: int = 4): super().__init__() self.data_dir = data_dir self.batch_size = batch_size self.num_workers = num_workers # Define data transforms for train, validation and test self.transform_train = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, padding=4), transforms.Resize((32,32)), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261)) ]) self.transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261)) ]) def prepare_data(self): # Download CIFAR-10 dataset datasets.CIFAR10(root=self.data_dir, train=True, download=True) datasets.CIFAR10(root=self.data_dir, train=False, download=True) def setup(self, stage=None): # Split dataset for training, validation and test if stage == 'fit' or stage is None: full_train_dataset = datasets.CIFAR10(root=self.data_dir, train=True, transform=self.transform_train) self.train_dataset, self.val_dataset = random_split(full_train_dataset, [45000, 5000]) if stage == 'test' or stage is None: self.test_dataset = datasets.CIFAR10(root=self.data_dir, train=False, transform=self.transform_test) def train_dataloader(self): return DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=self.num_workers) def val_dataloader(self): return DataLoader(self.val_dataset, batch_size=self.batch_size, num_workers=self.num_workers) def test_dataloader(self): return DataLoader(self.test_dataset, batch_size=self.batch_size, num_workers=self.num_workers) def predict_dataloader(self): return DataLoader(self.test_dataset, batch_size=self.batch_size, num_workers=self.num_workers)