Spaces:
Sleeping
Sleeping
import torch | |
from torch.utils.data import DataLoader, random_split | |
from torchvision import transforms, datasets | |
import lightning as pl | |
class CIFAR10DataModule(pl.LightningDataModule): | |
def __init__(self, data_dir: str = r'/home/muthu/GitHub/DATA π/CIFAR', batch_size: int = 32, num_workers: int = 4): | |
super().__init__() | |
self.data_dir = data_dir | |
self.batch_size = batch_size | |
self.num_workers = num_workers | |
# Define data transforms for train, validation and test | |
self.transform_train = transforms.Compose([ | |
transforms.RandomHorizontalFlip(), | |
transforms.RandomCrop(32, padding=4), | |
transforms.Resize((32,32)), | |
transforms.ToTensor(), | |
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261)) | |
]) | |
self.transform_test = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261)) | |
]) | |
def prepare_data(self): | |
# Download CIFAR-10 dataset | |
datasets.CIFAR10(root=self.data_dir, train=True, download=True) | |
datasets.CIFAR10(root=self.data_dir, train=False, download=True) | |
def setup(self, stage=None): | |
# Split dataset for training, validation and test | |
if stage == 'fit' or stage is None: | |
full_train_dataset = datasets.CIFAR10(root=self.data_dir, train=True, transform=self.transform_train) | |
self.train_dataset, self.val_dataset = random_split(full_train_dataset, [45000, 5000]) | |
if stage == 'test' or stage is None: | |
self.test_dataset = datasets.CIFAR10(root=self.data_dir, train=False, transform=self.transform_test) | |
def train_dataloader(self): | |
return DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=self.num_workers) | |
def val_dataloader(self): | |
return DataLoader(self.val_dataset, batch_size=self.batch_size, num_workers=self.num_workers) | |
def test_dataloader(self): | |
return DataLoader(self.test_dataset, batch_size=self.batch_size, num_workers=self.num_workers) | |
def predict_dataloader(self): | |
return DataLoader(self.test_dataset, batch_size=self.batch_size, num_workers=self.num_workers) | |