File size: 7,204 Bytes
197f827
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import lightning as pl \n",
    "from src.datamodule import CIFAR10DataModule\n",
    "from src.vit import ViTLightning"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "GPU available: True (cuda), used: True\n",
      "TPU available: False, using: 0 TPU cores\n",
      "HPU available: False, using: 0 HPUs\n"
     ]
    }
   ],
   "source": [
    "trainer = pl.Trainer(max_epochs=15,accelerator='auto',reload_dataloaders_every_n_epochs=2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "model = ViTLightning()\n",
    "dm = CIFAR10DataModule()\n",
    "dm.setup()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "You are using a CUDA device ('NVIDIA GeForce RTX 4050 Laptop GPU') that has Tensor Cores. To properly utilize them, you should set `torch.set_float32_matmul_precision('medium' | 'high')` which will trade-off precision for performance. For more details, read https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Files already downloaded and verified\n",
      "Files already downloaded and verified\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
      "Loading `train_dataloader` to estimate number of stepping batches.\n",
      "\n",
      "  | Name      | Type               | Params | Mode \n",
      "---------------------------------------------------------\n",
      "0 | vit       | ViT                | 154 K  | train\n",
      "1 | train_acc | MulticlassAccuracy | 0      | train\n",
      "2 | val_acc   | MulticlassAccuracy | 0      | train\n",
      "3 | test_acc  | MulticlassAccuracy | 0      | train\n",
      "---------------------------------------------------------\n",
      "154 K     Trainable params\n",
      "0         Non-trainable params\n",
      "154 K     Total params\n",
      "0.616     Total estimated model params size (MB)\n",
      "37        Modules in train mode\n",
      "0         Modules in eval mode\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 14: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1407/1407 [00:28<00:00, 49.90it/s, v_num=0, train_loss=0.518, train_acc=0.875, val_loss=0.996, val_acc=0.644]"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "`Trainer.fit` stopped: `max_epochs=15` reached.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 14: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1407/1407 [00:28<00:00, 49.87it/s, v_num=0, train_loss=0.518, train_acc=0.875, val_loss=0.996, val_acc=0.644]\n"
     ]
    }
   ],
   "source": [
    "trainer.fit(datamodule=dm,model=model)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Files already downloaded and verified\n",
      "Files already downloaded and verified\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Validation DataLoader 0: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 157/157 [00:00<00:00, 163.27it/s]\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
       "┃<span style=\"font-weight: bold\">      Validate metric      </span>┃<span style=\"font-weight: bold\">       DataLoader 0        </span>┃\n",
       "┑━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
       "β”‚<span style=\"color: #008080; text-decoration-color: #008080\">          val_acc          </span>β”‚<span style=\"color: #800080; text-decoration-color: #800080\">    0.6284000277519226     </span>β”‚\n",
       "β”‚<span style=\"color: #008080; text-decoration-color: #008080\">         val_loss          </span>β”‚<span style=\"color: #800080; text-decoration-color: #800080\">    1.0169780254364014     </span>β”‚\n",
       "β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜\n",
       "</pre>\n"
      ],
      "text/plain": [
       "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n",
       "┃\u001b[1m \u001b[0m\u001b[1m     Validate metric     \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m      DataLoader 0       \u001b[0m\u001b[1m \u001b[0m┃\n",
       "┑━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n",
       "β”‚\u001b[36m \u001b[0m\u001b[36m         val_acc         \u001b[0m\u001b[36m \u001b[0mβ”‚\u001b[35m \u001b[0m\u001b[35m   0.6284000277519226    \u001b[0m\u001b[35m \u001b[0mβ”‚\n",
       "β”‚\u001b[36m \u001b[0m\u001b[36m        val_loss         \u001b[0m\u001b[36m \u001b[0mβ”‚\u001b[35m \u001b[0m\u001b[35m   1.0169780254364014    \u001b[0m\u001b[35m \u001b[0mβ”‚\n",
       "β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜\n"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "[{'val_loss': 1.0169780254364014, 'val_acc': 0.6284000277519226}]"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "trainer.validate(model,dm)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}