Spaces:
Sleeping
Sleeping
File size: 7,204 Bytes
197f827 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import lightning as pl \n",
"from src.datamodule import CIFAR10DataModule\n",
"from src.vit import ViTLightning"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"GPU available: True (cuda), used: True\n",
"TPU available: False, using: 0 TPU cores\n",
"HPU available: False, using: 0 HPUs\n"
]
}
],
"source": [
"trainer = pl.Trainer(max_epochs=15,accelerator='auto',reload_dataloaders_every_n_epochs=2)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"model = ViTLightning()\n",
"dm = CIFAR10DataModule()\n",
"dm.setup()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"You are using a CUDA device ('NVIDIA GeForce RTX 4050 Laptop GPU') that has Tensor Cores. To properly utilize them, you should set `torch.set_float32_matmul_precision('medium' | 'high')` which will trade-off precision for performance. For more details, read https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Files already downloaded and verified\n",
"Files already downloaded and verified\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n",
"Loading `train_dataloader` to estimate number of stepping batches.\n",
"\n",
" | Name | Type | Params | Mode \n",
"---------------------------------------------------------\n",
"0 | vit | ViT | 154 K | train\n",
"1 | train_acc | MulticlassAccuracy | 0 | train\n",
"2 | val_acc | MulticlassAccuracy | 0 | train\n",
"3 | test_acc | MulticlassAccuracy | 0 | train\n",
"---------------------------------------------------------\n",
"154 K Trainable params\n",
"0 Non-trainable params\n",
"154 K Total params\n",
"0.616 Total estimated model params size (MB)\n",
"37 Modules in train mode\n",
"0 Modules in eval mode\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 14: 100%|ββββββββββ| 1407/1407 [00:28<00:00, 49.90it/s, v_num=0, train_loss=0.518, train_acc=0.875, val_loss=0.996, val_acc=0.644]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"`Trainer.fit` stopped: `max_epochs=15` reached.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 14: 100%|ββββββββββ| 1407/1407 [00:28<00:00, 49.87it/s, v_num=0, train_loss=0.518, train_acc=0.875, val_loss=0.996, val_acc=0.644]\n"
]
}
],
"source": [
"trainer.fit(datamodule=dm,model=model)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Files already downloaded and verified\n",
"Files already downloaded and verified\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Validation DataLoader 0: 100%|ββββββββββ| 157/157 [00:00<00:00, 163.27it/s]\n"
]
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">βββββββββββββββββββββββββββββ³ββββββββββββββββββββββββββββ\n",
"β<span style=\"font-weight: bold\"> Validate metric </span>β<span style=\"font-weight: bold\"> DataLoader 0 </span>β\n",
"β‘ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ©\n",
"β<span style=\"color: #008080; text-decoration-color: #008080\"> val_acc </span>β<span style=\"color: #800080; text-decoration-color: #800080\"> 0.6284000277519226 </span>β\n",
"β<span style=\"color: #008080; text-decoration-color: #008080\"> val_loss </span>β<span style=\"color: #800080; text-decoration-color: #800080\"> 1.0169780254364014 </span>β\n",
"βββββββββββββββββββββββββββββ΄ββββββββββββββββββββββββββββ\n",
"</pre>\n"
],
"text/plain": [
"βββββββββββββββββββββββββββββ³ββββββββββββββββββββββββββββ\n",
"β\u001b[1m \u001b[0m\u001b[1m Validate metric \u001b[0m\u001b[1m \u001b[0mβ\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0mβ\n",
"β‘ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ©\n",
"β\u001b[36m \u001b[0m\u001b[36m val_acc \u001b[0m\u001b[36m \u001b[0mβ\u001b[35m \u001b[0m\u001b[35m 0.6284000277519226 \u001b[0m\u001b[35m \u001b[0mβ\n",
"β\u001b[36m \u001b[0m\u001b[36m val_loss \u001b[0m\u001b[36m \u001b[0mβ\u001b[35m \u001b[0m\u001b[35m 1.0169780254364014 \u001b[0m\u001b[35m \u001b[0mβ\n",
"βββββββββββββββββββββββββββββ΄ββββββββββββββββββββββββββββ\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"[{'val_loss': 1.0169780254364014, 'val_acc': 0.6284000277519226}]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"trainer.validate(model,dm)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|