File size: 1,078 Bytes
3c0c911
3ed6af0
3c0c911
02c80dc
 
3c0c911
02c80dc
 
 
96ca348
 
 
 
02c80dc
 
 
 
96ca348
 
02c80dc
 
 
 
 
 
 
 
 
 
 
 
 
96ca348
0db1abb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import gradio as gr
#import tensorflow as tf
import os
import numpy as np
import pandas as pd

df = pd.read_csv('/content/graph.csv')
start_datetime = pd.to_datetime('2011-01-01 00:00:00')
df['datetime'] = start_datetime + pd.to_timedelta(df['timestep'], unit='h')

with gr.Blocks(title="Forecasting Geomagnetic Storms", css="") as demo:
  with gr.Row():
    textmd = gr.Markdown('''
    # Forecasting Geomagnetic Storms  
    DST (Disturbance Storm Time) index is a measure of the strength of geomagnetic storms  
    `predicted_t0` is the predicted DST value at the current hour  
    `predicted_t1` is the predicted DST value at the next hour  
    ''')

  with gr.Row():
    line = gr.LinePlot(
            df,
            x="datetime",
            y="DST",
            color="name",
            color_legend_position="bottom",
            title="Graph of Predicted DST values and Ground Truth",
            tooltip=["datetime", "DST", "name"],
            height=600,
            width=1000,
            interactive=True,
        )

demo.launch(debug='False', share=False)