import gradio as gr import os api_token = os.getenv("HF_TOKEN") from langchain.llms.base import LLM from transformers import AutoTokenizer from huggingface_hub import HfApi import requests from langchain_community.vectorstores import FAISS from langchain_community.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import Chroma from langchain.chains import ConversationalRetrievalChain from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.llms import HuggingFacePipeline from langchain.chains import ConversationChain from langchain.memory import ConversationBufferMemory from langchain_community.llms import HuggingFaceHub, HuggingFaceEndpoint import torch from langchain.llms.base import LLM from transformers import AutoTokenizer from huggingface_hub import HfApi import requests list_llm = ["meta-llama/Llama-3.1-8B-Instruct"] # , "HuggingFaceH4/zephyr-7b-beta"] # "mistralai/Mistral-7B-Instruct-v0.2" # meta-llama/Meta-Llama-3-8B-Instruct list_llm_simple = [os.path.basename(llm) for llm in list_llm] # class ZephyrLLM(LLM): # def __init__(self, repo_id, huggingfacehub_api_token, max_new_tokens=512, temperature=0.7, **kwargs): # super().__init__(**kwargs) # self.repo_id = repo_id # self.api_token = huggingfacehub_api_token # self.api_url = f"https://api-inference.huggingface.co/models/{repo_id}" # self.headers = {"Authorization": f"Bearer {huggingfacehub_api_token}"} # self.tokenizer = AutoTokenizer.from_pretrained(repo_id) # self.max_new_tokens = max_new_tokens # self.temperature = temperature # def _call(self, prompt, stop=None): # # Format as chat message # messages = [{"role": "user", "content": prompt}] # # Apply Zephyr's chat template # formatted_prompt = self.tokenizer.apply_chat_template( # messages, tokenize=False, add_generation_prompt=True # ) # # Send request to Hugging Face Inference API # payload = { # "inputs": formatted_prompt, # "parameters": { # "max_new_tokens": self.max_new_tokens, # "temperature": self.temperature # } # } # response = requests.post(self.api_url, headers=self.headers, json=payload) # if response.status_code == 200: # full_response = response.json()[0]["generated_text"] # # Extract the assistant reply from the full response # # After <|assistant|>\n, everything is the model's answer # if "<|assistant|>" in full_response: # return full_response.split("<|assistant|>")[-1].strip() # else: # return full_response.strip() # else: # raise Exception(f"Failed call [{response.status_code}]: {response.text}") # @property # def _llm_type(self) -> str: # return "zephyr-custom" # Load and split PDF document def load_doc(list_file_path): # Processing for one document only # loader = PyPDFLoader(file_path) # pages = loader.load() loaders = [PyPDFLoader(x) for x in list_file_path] pages = [] for loader in loaders: pages.extend(loader.load()) text_splitter = RecursiveCharacterTextSplitter( chunk_size = 1024, chunk_overlap = 64 ) doc_splits = text_splitter.split_documents(pages) return doc_splits # Create vector database def create_db(splits): embeddings = HuggingFaceEmbeddings() vectordb = FAISS.from_documents(splits, embeddings) return vectordb # Initialize langchain LLM chain def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): # if llm_model == "HuggingFaceH4/zephyr-7b-beta": # llm = ZephyrLLM( # repo_id=llm_model, # huggingfacehub_api_token=api_token, # temperature=temperature, # max_new_tokens=max_tokens, # ) if llm_model == "meta-llama/Llama-3.1-8B-Instruct": llm = HuggingFaceEndpoint( repo_id=llm_model, task="text-generation", huggingfacehub_api_token = api_token, temperature = temperature, max_new_tokens = max_tokens, top_k = top_k, ) # llm = HuggingFaceHub( # repo_id="mistralai/Mistral-7B-Instruct-v0.2", # huggingfacehub_api_token=api_token, # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens} # ) else: llm = HuggingFaceEndpoint( huggingfacehub_api_token = api_token, repo_id=llm_model, task="text-generation", temperature = temperature, max_new_tokens = max_tokens, top_k = top_k, ) memory = ConversationBufferMemory( memory_key="chat_history", output_key='answer', return_messages=True ) retriever=vector_db.as_retriever() qa_chain = ConversationalRetrievalChain.from_llm( llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True, verbose=False, ) return qa_chain # Initialize database def initialize_database(list_file_obj, progress=gr.Progress()): # Create a list of documents (when valid) list_file_path = [x.name for x in list_file_obj if x is not None] # Load document and create splits doc_splits = load_doc(list_file_path) # Create or load vector database vector_db = create_db(doc_splits) return vector_db, "Database created!" # Initialize LLM def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): # print("llm_option",llm_option) llm_name = list_llm[llm_option] print("llm_name: ",llm_name) qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress) return qa_chain, "QA chain initialized. Chatbot is ready!" def format_chat_history(message, chat_history): formatted_chat_history = [] for user_message, bot_message in chat_history: formatted_chat_history.append(f"User: {user_message}") formatted_chat_history.append(f"Assistant: {bot_message}") return formatted_chat_history def conversation(qa_chain, message, history): formatted_chat_history = format_chat_history(message, history) # Generate response using QA chain response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history}) response_answer = response["answer"] if response_answer.find("Helpful Answer:") != -1: response_answer = response_answer.split("Helpful Answer:")[-1] response_sources = response["source_documents"] response_source1 = response_sources[0].page_content.strip() response_source2 = response_sources[1].page_content.strip() response_source3 = response_sources[2].page_content.strip() # Langchain sources are zero-based response_source1_page = response_sources[0].metadata["page"] + 1 response_source2_page = response_sources[1].metadata["page"] + 1 response_source3_page = response_sources[2].metadata["page"] + 1 # Append user message and response to chat history new_history = history + [(message, response_answer)] return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page def upload_file(file_obj): list_file_path = [] for idx, file in enumerate(file_obj): file_path = file_obj.name list_file_path.append(file_path) return list_file_path def demo(): # with gr.Blocks(theme=gr.themes.Default(primary_hue="sky")) as demo: with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue = "sky")) as demo: vector_db = gr.State() qa_chain = gr.State() gr.HTML("