|
import gradio as gr |
|
import os |
|
api_token = os.getenv("HF_TOKEN") |
|
|
|
from langchain_community.vectorstores import FAISS |
|
from langchain_community.document_loaders import PyPDFLoader |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.chains import ConversationalRetrievalChain |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain_community.llms import HuggingFaceEndpoint |
|
|
|
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"] |
|
list_llm_simple = [os.path.basename(llm) for llm in list_llm] |
|
|
|
def load_doc(list_file_path): |
|
loaders = [PyPDFLoader(x) for x in list_file_path] |
|
pages = [] |
|
for loader in loaders: |
|
pages.extend(loader.load()) |
|
text_splitter = RecursiveCharacterTextSplitter( |
|
chunk_size=1024, |
|
chunk_overlap=64 |
|
) |
|
return text_splitter.split_documents(pages) |
|
|
|
def create_db(splits): |
|
return FAISS.from_documents(splits, HuggingFaceEmbeddings()) |
|
|
|
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db): |
|
llm = HuggingFaceEndpoint( |
|
repo_id=llm_model, |
|
huggingfacehub_api_token=api_token, |
|
temperature=temperature, |
|
max_new_tokens=max_tokens, |
|
top_k=top_k, |
|
) |
|
|
|
memory = ConversationBufferMemory( |
|
memory_key="chat_history", |
|
output_key='answer', |
|
return_messages=True |
|
) |
|
|
|
return ConversationalRetrievalChain.from_llm( |
|
llm, |
|
retriever=vector_db.as_retriever(), |
|
chain_type="stuff", |
|
memory=memory, |
|
return_source_documents=True, |
|
verbose=False, |
|
) |
|
|
|
def initialize_database(list_file_obj): |
|
list_file_path = [x.name for x in list_file_obj if x is not None] |
|
return create_db(load_doc(list_file_path)), "Database created!" |
|
|
|
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db): |
|
llm_name = list_llm[llm_option] |
|
return initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db), "QA chain initialized!" |
|
|
|
def format_chat_history(message, chat_history): |
|
formatted = [] |
|
for user_msg, bot_msg in chat_history: |
|
formatted.extend([f"User: {user_msg}", f"Assistant: {bot_msg}"]) |
|
return formatted |
|
|
|
def conversation(qa_chain, message, history): |
|
response = qa_chain.invoke({ |
|
"question": message, |
|
"chat_history": format_chat_history(message, history) |
|
}) |
|
answer = response["answer"].split("Helpful Answer:")[-1] |
|
sources = response["source_documents"] |
|
return ( |
|
qa_chain, |
|
gr.update(value=""), |
|
history + [(message, answer)], |
|
sources[0].page_content.strip(), sources[0].metadata["page"] + 1, |
|
sources[1].page_content.strip(), sources[1].metadata["page"] + 1, |
|
sources[2].page_content.strip(), sources[2].metadata["page"] + 1 |
|
) |
|
|
|
def demo(): |
|
css = """ |
|
#main-container { |
|
display: flex; |
|
flex-wrap: nowrap; |
|
width: 80% !important; |
|
max-width: 100vw !important; |
|
overflow: hidden; |
|
} |
|
#left-column { |
|
flex: 0 1 35%; |
|
min-width: 150px !important; |
|
max-width: 100% !important; |
|
} |
|
#right-column { |
|
flex: 1 1 65%; |
|
min-width: 300px !important; |
|
max-width: 100% !important; |
|
} |
|
.chatbot { |
|
width: 100% !important; |
|
max-width: 100% !important; |
|
} |
|
.textbox { |
|
max-width: 100% !important; |
|
} |
|
@media (max-width: 900px) { |
|
#main-container { flex-wrap: wrap; } |
|
#left-column, #right-column { flex: 1 1 100% !important; } |
|
} |
|
""" |
|
|
|
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky"), css=css) as demo: |
|
vector_db = gr.State() |
|
qa_chain = gr.State() |
|
|
|
gr.Markdown("## RAG PDF Chatbot") |
|
|
|
with gr.Row(elem_id="main-container"): |
|
with gr.Column(elem_id="left-column"): |
|
|
|
with gr.Group(): |
|
gr.Markdown("**Step 1 - Setup**") |
|
docs = gr.Files(file_types=[".pdf"], label="Upload PDFs") |
|
db_btn = gr.Button("Create Vector DB") |
|
db_status = gr.Textbox("Not initialized", show_label=False) |
|
|
|
gr.Markdown("**LLM Selection**") |
|
llm_select = gr.Radio(list_llm_simple, label="Model", value=list_llm_simple[0], type="index") |
|
|
|
with gr.Accordion("Parameters", open=False): |
|
temp = gr.Slider(0.01, 1.0, 0.5, label="Temperature") |
|
tokens = gr.Slider(128, 8192, 4096, step=128, label="Max Tokens") |
|
topk = gr.Slider(1, 10, 3, step=1, label="Top-K") |
|
|
|
init_btn = gr.Button("Initialize Chatbot") |
|
llm_status = gr.Textbox("Not initialized", show_label=False) |
|
|
|
with gr.Column(elem_id="right-column"): |
|
|
|
gr.Markdown("**Step 2 - Chat**") |
|
chatbot = gr.Chatbot(height=400, elem_classes="chatbot") |
|
|
|
with gr.Accordion("Source Context", open=False): |
|
with gr.Row(): |
|
src1 = gr.Textbox(label="Reference 1", lines=2, max_lines=2, elem_classes="textbox") |
|
pg1 = gr.Number(label="Page") |
|
with gr.Row(): |
|
src2 = gr.Textbox(label="Reference 2", lines=2, max_lines=2, elem_classes="textbox") |
|
pg2 = gr.Number(label="Page") |
|
with gr.Row(): |
|
src3 = gr.Textbox(label="Reference 3", lines=2, max_lines=2, elem_classes="textbox") |
|
pg3 = gr.Number(label="Page") |
|
|
|
msg = gr.Textbox(placeholder="Ask something...", elem_classes="textbox") |
|
with gr.Row(): |
|
submit = gr.Button("Submit") |
|
clear = gr.ClearButton([msg, chatbot]) |
|
|
|
|
|
db_btn.click( |
|
initialize_database, [docs], [vector_db, db_status] |
|
) |
|
init_btn.click( |
|
initialize_LLM, [llm_select, temp, tokens, topk, vector_db], [qa_chain, llm_status] |
|
).then( |
|
lambda: [None,"",0,"",0,"",0], None, [chatbot, src1, pg1, src2, pg2, src3, pg3] |
|
) |
|
msg.submit(conversation, [qa_chain, msg, chatbot], |
|
[qa_chain, msg, chatbot, src1, pg1, src2, pg2, src3, pg3]) |
|
submit.click(conversation, [qa_chain, msg, chatbot], |
|
[qa_chain, msg, chatbot, src1, pg1, src2, pg2, src3, pg3]) |
|
clear.click( |
|
lambda: [None,"",0,"",0,"",0], None, [chatbot, src1, pg1, src2, pg2, src3, pg3] |
|
) |
|
|
|
return demo |
|
|
|
if __name__ == "__main__": |
|
demo().launch() |