Update app.py
Browse files
app.py
CHANGED
@@ -14,143 +14,92 @@ import gc
|
|
14 |
from huggingface_hub import hf_hub_download
|
15 |
import threading
|
16 |
|
17 |
-
#
|
18 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
19 |
from diffusers import (
|
20 |
-
|
21 |
DDIMScheduler,
|
22 |
DPMSolverMultistepScheduler
|
23 |
)
|
24 |
import soundfile as sf
|
25 |
import requests
|
26 |
|
27 |
-
#
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
except ImportError:
|
32 |
-
FLASH_ATTN_AVAILABLE = False
|
33 |
-
print("⚠️ Flash Attention not available - using standard attention")
|
34 |
-
|
35 |
-
try:
|
36 |
-
import triton
|
37 |
-
TRITON_AVAILABLE = True
|
38 |
-
except ImportError:
|
39 |
-
TRITON_AVAILABLE = False
|
40 |
-
print("⚠️ Triton not available - using standard operations")
|
41 |
|
42 |
# Global lock to prevent concurrent generations
|
43 |
generation_lock = threading.Lock()
|
44 |
|
45 |
class ProfessionalCartoonFilmGenerator:
|
46 |
def __init__(self):
|
47 |
-
|
|
|
|
|
48 |
|
49 |
# Use /tmp directory for Hugging Face Spaces storage
|
50 |
-
# Note: HF Spaces only allows storage in /tmp, no subdirectories allowed
|
51 |
self.output_dir = "/tmp"
|
52 |
print(f"📁 Using Hugging Face temp directory: {self.output_dir}")
|
53 |
|
54 |
-
# Note: Cannot create subdirectories in /tmp on HF Spaces
|
55 |
-
# Will use file prefixes instead (char_, bg_, video_, etc.)
|
56 |
-
|
57 |
# Model configurations for ZeroGPU optimization
|
58 |
self.models_loaded = False
|
59 |
-
self.
|
60 |
self.flux_pipe = None
|
61 |
-
self.
|
62 |
-
self.
|
63 |
-
self.
|
64 |
-
self.sketch_lora = None
|
65 |
|
66 |
-
@spaces.GPU
|
67 |
def load_models(self):
|
68 |
-
"""Load
|
69 |
try:
|
70 |
-
print("🚀 Loading
|
71 |
-
|
72 |
-
# Clear GPU memory first
|
73 |
-
self.clear_gpu_memory()
|
74 |
|
75 |
-
#
|
76 |
-
|
77 |
-
self.dtype = torch.float16 if self.device == "cuda" else torch.float32
|
78 |
|
79 |
print(f"🎮 Using device: {self.device} with dtype: {self.dtype}")
|
80 |
|
81 |
-
#
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
print("🔐 FLUX authentication failed - model requires Hugging Face token")
|
100 |
-
print("💡 To use FLUX, you need to:")
|
101 |
-
print(" 1. Get a Hugging Face token from https://huggingface.co/settings/tokens")
|
102 |
-
print(" 2. Accept the FLUX model license at https://huggingface.co/black-forest-labs/FLUX.1-dev")
|
103 |
-
print(" 3. Set your token: huggingface-cli login")
|
104 |
-
print("🔄 Falling back to Stable Diffusion...")
|
105 |
-
self.flux_available = False
|
106 |
-
|
107 |
-
# Load Stable Diffusion fallback
|
108 |
-
if not self.flux_available:
|
109 |
-
print("🔄 Loading Stable Diffusion fallback model...")
|
110 |
-
from diffusers import StableDiffusionPipeline, DDIMScheduler
|
111 |
-
|
112 |
-
self.sd_pipe = StableDiffusionPipeline.from_pretrained(
|
113 |
-
"CompVis/stable-diffusion-v1-4",
|
114 |
-
torch_dtype=self.dtype,
|
115 |
-
safety_checker=None,
|
116 |
-
requires_safety_checker=False
|
117 |
-
)
|
118 |
-
|
119 |
-
# Configure scheduler for better quality
|
120 |
-
self.sd_pipe.scheduler = DDIMScheduler.from_config(self.sd_pipe.scheduler.config)
|
121 |
-
|
122 |
-
if self.device == "cuda":
|
123 |
-
self.sd_pipe = self.sd_pipe.to("cuda")
|
124 |
|
125 |
-
|
126 |
-
print("✅ Stable Diffusion fallback loaded successfully")
|
127 |
|
128 |
-
# Load script enhancement model
|
129 |
print("📝 Loading script enhancement model...")
|
130 |
self.script_model = AutoModelForCausalLM.from_pretrained(
|
131 |
"microsoft/DialoGPT-medium",
|
132 |
torch_dtype=self.dtype,
|
133 |
-
device_map=
|
134 |
)
|
135 |
self.script_tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
136 |
|
137 |
if self.script_tokenizer.pad_token is None:
|
138 |
self.script_tokenizer.pad_token = self.script_tokenizer.eos_token
|
139 |
|
140 |
-
|
141 |
-
|
142 |
|
143 |
print(f"Device set to use {self.device}")
|
144 |
-
print("✅ Script enhancer loaded")
|
145 |
-
|
146 |
-
# Set model states
|
147 |
-
if self.device == "cuda":
|
148 |
-
if self.flux_available:
|
149 |
-
self.flux_pipe.enable_model_cpu_offload()
|
150 |
-
else:
|
151 |
-
self.sd_pipe.enable_model_cpu_offload()
|
152 |
|
153 |
-
print("🎬 All
|
154 |
return True
|
155 |
|
156 |
except Exception as e:
|
@@ -160,10 +109,8 @@ class ProfessionalCartoonFilmGenerator:
|
|
160 |
return False
|
161 |
|
162 |
def clear_gpu_memory(self):
|
163 |
-
"""Clear
|
164 |
-
|
165 |
-
torch.cuda.empty_cache()
|
166 |
-
gc.collect()
|
167 |
|
168 |
def optimize_prompt_for_clip(self, prompt: str, max_tokens: int = 70) -> str:
|
169 |
"""Optimize prompt to fit within CLIP token limit"""
|
@@ -201,8 +148,7 @@ class ProfessionalCartoonFilmGenerator:
|
|
201 |
return download_info
|
202 |
|
203 |
except Exception as e:
|
204 |
-
|
205 |
-
return f"📁 File generated: {file_path}"
|
206 |
|
207 |
def generate_professional_script(self, user_input: str) -> Dict[str, Any]:
|
208 |
"""Generate a professional cartoon script with detailed character development"""
|
@@ -447,28 +393,19 @@ class ProfessionalCartoonFilmGenerator:
|
|
447 |
}
|
448 |
return palettes.get(mood, "balanced warm and cool tones")
|
449 |
|
450 |
-
@spaces.GPU
|
451 |
def generate_professional_character_images(self, characters: List[Dict]) -> Dict[str, str]:
|
452 |
-
"""Generate professional character images with consistency"""
|
453 |
character_images = {}
|
454 |
|
455 |
print(f"🎭 Generating {len(characters)} professional character designs...")
|
456 |
|
457 |
-
# Check if we have
|
458 |
-
if not hasattr(self, '
|
459 |
-
print("❌
|
460 |
return character_images
|
461 |
|
462 |
-
pipeline =
|
463 |
-
|
464 |
-
pipeline = self.flux_pipe
|
465 |
-
model_name = "FLUX"
|
466 |
-
elif hasattr(self, 'sd_pipe'):
|
467 |
-
pipeline = self.sd_pipe
|
468 |
-
model_name = "Stable Diffusion"
|
469 |
-
else:
|
470 |
-
print("❌ No image generation pipeline available")
|
471 |
-
return character_images
|
472 |
|
473 |
print(f"🎨 Using {model_name} for character generation")
|
474 |
|
@@ -477,44 +414,28 @@ class ProfessionalCartoonFilmGenerator:
|
|
477 |
print(f"\n🎨 Generating character: {character_name}")
|
478 |
|
479 |
try:
|
480 |
-
# Build comprehensive character prompt
|
481 |
base_prompt = f"Professional cartoon character design, {character['name']}, {character['description']}"
|
482 |
|
483 |
-
#
|
484 |
-
|
485 |
-
# FLUX-specific prompt
|
486 |
-
prompt = f"{base_prompt}, Disney-Pixar animation style, highly detailed character sheet, clean white background, 2D animation model sheet, expressive face, vibrant colors, professional character design, perfect for animation"
|
487 |
-
else:
|
488 |
-
# Stable Diffusion prompt
|
489 |
-
prompt = f"{base_prompt}, anime style, cartoon character, clean background, high quality, detailed, 2D animation style, character sheet"
|
490 |
|
491 |
# Optimize prompt for CLIP
|
492 |
-
prompt = self.optimize_prompt_for_clip(prompt, max_tokens=
|
493 |
print(f"📝 Character prompt: {prompt}")
|
494 |
|
495 |
-
#
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
# Stable Diffusion generation settings
|
508 |
-
image = pipeline(
|
509 |
-
prompt=prompt,
|
510 |
-
width=512,
|
511 |
-
height=512,
|
512 |
-
num_inference_steps=30,
|
513 |
-
guidance_scale=7.5,
|
514 |
-
generator=torch.Generator(device=self.device).manual_seed(42)
|
515 |
-
).images[0]
|
516 |
-
# Upscale for SD
|
517 |
-
image = image.resize((1024, 1024), Image.Resampling.LANCZOS)
|
518 |
|
519 |
# Save character image
|
520 |
char_path = f"{self.output_dir}/char_{character['name'].replace(' ', '_')}.png"
|
@@ -532,10 +453,8 @@ class ProfessionalCartoonFilmGenerator:
|
|
532 |
print(f" 📁 Internal path: {char_path}")
|
533 |
print(download_info)
|
534 |
|
535 |
-
# Clear
|
536 |
-
|
537 |
-
torch.cuda.empty_cache()
|
538 |
-
gc.collect()
|
539 |
else:
|
540 |
print(f"❌ Failed to save character image: {char_path}")
|
541 |
|
@@ -553,28 +472,19 @@ class ProfessionalCartoonFilmGenerator:
|
|
553 |
|
554 |
return character_images
|
555 |
|
556 |
-
@spaces.GPU
|
557 |
def generate_cinematic_backgrounds(self, scenes: List[Dict], color_palette: str) -> Dict[int, str]:
|
558 |
-
"""Generate professional cinematic backgrounds for each scene"""
|
559 |
background_images = {}
|
560 |
|
561 |
print(f"🎞️ Generating {len(scenes)} cinematic backgrounds...")
|
562 |
|
563 |
-
# Check if we have
|
564 |
-
if not hasattr(self, '
|
565 |
-
print("❌
|
566 |
return background_images
|
567 |
|
568 |
-
pipeline =
|
569 |
-
|
570 |
-
pipeline = self.flux_pipe
|
571 |
-
model_name = "FLUX"
|
572 |
-
elif hasattr(self, 'sd_pipe'):
|
573 |
-
pipeline = self.sd_pipe
|
574 |
-
model_name = "Stable Diffusion"
|
575 |
-
else:
|
576 |
-
print("❌ No image generation pipeline available")
|
577 |
-
return background_images
|
578 |
|
579 |
print(f"🎨 Using {model_name} for background generation")
|
580 |
|
@@ -583,7 +493,7 @@ class ProfessionalCartoonFilmGenerator:
|
|
583 |
print(f"\n🌄 Generating background for scene {scene_num}")
|
584 |
|
585 |
try:
|
586 |
-
# Build cinematic background prompt
|
587 |
background_desc = scene['background']
|
588 |
mood = scene.get('mood', 'neutral')
|
589 |
shot_type = scene.get('shot_type', 'medium shot')
|
@@ -591,39 +501,25 @@ class ProfessionalCartoonFilmGenerator:
|
|
591 |
|
592 |
base_prompt = f"Cinematic background scene, {background_desc}, {mood} atmosphere, {lighting}"
|
593 |
|
594 |
-
#
|
595 |
-
|
596 |
-
prompt = f"{base_prompt}, Disney-Pixar animation style, detailed landscape, professional background art, vibrant colors, high quality, cinematic composition, no characters"
|
597 |
-
else:
|
598 |
-
prompt = f"{base_prompt}, anime style background, detailed landscape, high quality, cinematic, {color_palette} color palette, no people"
|
599 |
|
600 |
# Optimize for CLIP
|
601 |
-
prompt = self.optimize_prompt_for_clip(prompt, max_tokens=
|
602 |
print(f"📝 Background prompt: {prompt}")
|
603 |
|
604 |
-
#
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
# Stable Diffusion generation settings
|
617 |
-
image = pipeline(
|
618 |
-
prompt=prompt,
|
619 |
-
width=512,
|
620 |
-
height=384, # 4:3 aspect ratio
|
621 |
-
num_inference_steps=30,
|
622 |
-
guidance_scale=7.5,
|
623 |
-
generator=torch.Generator(device=self.device).manual_seed(scene_num * 10)
|
624 |
-
).images[0]
|
625 |
-
# Upscale for SD
|
626 |
-
image = image.resize((1024, 768), Image.Resampling.LANCZOS)
|
627 |
|
628 |
# Save background image
|
629 |
bg_path = f"{self.output_dir}/bg_scene_{scene_num}.png"
|
@@ -641,10 +537,8 @@ class ProfessionalCartoonFilmGenerator:
|
|
641 |
print(f" 📁 Internal path: {bg_path}")
|
642 |
print(download_info)
|
643 |
|
644 |
-
# Clear
|
645 |
-
|
646 |
-
torch.cuda.empty_cache()
|
647 |
-
gc.collect()
|
648 |
else:
|
649 |
print(f"❌ Failed to save background image: {bg_path}")
|
650 |
|
@@ -667,6 +561,9 @@ class ProfessionalCartoonFilmGenerator:
|
|
667 |
try:
|
668 |
print("🎬 Setting up Open-Sora 2.0 for video generation...")
|
669 |
|
|
|
|
|
|
|
670 |
# Check available GPU memory
|
671 |
if torch.cuda.is_available():
|
672 |
gpu_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
|
@@ -774,7 +671,6 @@ class ProfessionalCartoonFilmGenerator:
|
|
774 |
traceback.print_exc()
|
775 |
return False
|
776 |
|
777 |
-
@spaces.GPU
|
778 |
def generate_professional_videos(self, scenes: List[Dict], character_images: Dict, background_images: Dict) -> List[str]:
|
779 |
"""Generate professional videos using Open-Sora 2.0"""
|
780 |
scene_videos = []
|
@@ -1129,11 +1025,10 @@ class ProfessionalCartoonFilmGenerator:
|
|
1129 |
return None
|
1130 |
|
1131 |
def _create_emergency_fallback_video(self, script_data: Dict) -> str:
|
1132 |
-
"""Create
|
1133 |
try:
|
1134 |
print("🆘 Creating emergency fallback video...")
|
1135 |
|
1136 |
-
# Create a simple colored background
|
1137 |
width, height = 1024, 768
|
1138 |
background_color = (100, 150, 200) # Blue-ish color
|
1139 |
|
@@ -1152,12 +1047,16 @@ class ProfessionalCartoonFilmGenerator:
|
|
1152 |
|
1153 |
# Create simple animated background
|
1154 |
for i in range(total_frames):
|
|
|
1155 |
frame = np.full((height, width, 3), background_color, dtype=np.uint8)
|
1156 |
|
1157 |
-
# Add simple animation (color shift)
|
1158 |
progress = i / total_frames
|
1159 |
color_shift = int(50 * np.sin(progress * 2 * np.pi))
|
1160 |
-
|
|
|
|
|
|
|
1161 |
|
1162 |
# Add text
|
1163 |
font = cv2.FONT_HERSHEY_SIMPLEX
|
@@ -1181,6 +1080,8 @@ class ProfessionalCartoonFilmGenerator:
|
|
1181 |
|
1182 |
except Exception as e:
|
1183 |
print(f"❌ Emergency fallback video creation failed: {e}")
|
|
|
|
|
1184 |
return None
|
1185 |
|
1186 |
def merge_professional_film(self, scene_videos: List[str], script_data: Dict) -> str:
|
@@ -1224,12 +1125,25 @@ class ProfessionalCartoonFilmGenerator:
|
|
1224 |
print(f"❌ Video merging failed: {e}")
|
1225 |
return None
|
1226 |
|
1227 |
-
@spaces.GPU
|
1228 |
def generate_professional_cartoon_film(self, script: str) -> tuple:
|
1229 |
-
"""Main function to generate professional-quality cartoon film"""
|
1230 |
try:
|
1231 |
print("🎬 Starting professional cartoon film generation...")
|
1232 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1233 |
# Step 1: Generate professional script
|
1234 |
print("📝 Creating professional script structure...")
|
1235 |
script_data = self.generate_professional_script(script)
|
@@ -1486,9 +1400,8 @@ class ProfessionalCartoonFilmGenerator:
|
|
1486 |
# Initialize professional generator
|
1487 |
generator = ProfessionalCartoonFilmGenerator()
|
1488 |
|
1489 |
-
@spaces.GPU
|
1490 |
def create_professional_cartoon_film(script):
|
1491 |
-
"""Gradio interface function for professional generation"""
|
1492 |
if not script.strip():
|
1493 |
empty_response = {
|
1494 |
"error": True,
|
@@ -1508,7 +1421,7 @@ def create_professional_cartoon_film(script):
|
|
1508 |
"scenes": [],
|
1509 |
"style": "Please wait for current generation to complete"
|
1510 |
}
|
1511 |
-
return None, busy_response, "⏳
|
1512 |
|
1513 |
try:
|
1514 |
return generator.generate_professional_cartoon_film(script)
|
|
|
14 |
from huggingface_hub import hf_hub_download
|
15 |
import threading
|
16 |
|
17 |
+
# ZeroGPU-compatible imports
|
18 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
19 |
from diffusers import (
|
20 |
+
StableDiffusionPipeline,
|
21 |
DDIMScheduler,
|
22 |
DPMSolverMultistepScheduler
|
23 |
)
|
24 |
import soundfile as sf
|
25 |
import requests
|
26 |
|
27 |
+
# ZeroGPU compatibility - disable GPU-specific optimizations
|
28 |
+
FLASH_ATTN_AVAILABLE = False
|
29 |
+
TRITON_AVAILABLE = False
|
30 |
+
print("⚠️ ZeroGPU mode - using CPU-optimized operations")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
# Global lock to prevent concurrent generations
|
33 |
generation_lock = threading.Lock()
|
34 |
|
35 |
class ProfessionalCartoonFilmGenerator:
|
36 |
def __init__(self):
|
37 |
+
# ZeroGPU compatibility - force CPU usage
|
38 |
+
self.device = "cpu"
|
39 |
+
self.dtype = torch.float32 # Use float32 for CPU compatibility
|
40 |
|
41 |
# Use /tmp directory for Hugging Face Spaces storage
|
|
|
42 |
self.output_dir = "/tmp"
|
43 |
print(f"📁 Using Hugging Face temp directory: {self.output_dir}")
|
44 |
|
|
|
|
|
|
|
45 |
# Model configurations for ZeroGPU optimization
|
46 |
self.models_loaded = False
|
47 |
+
self.flux_available = False
|
48 |
self.flux_pipe = None
|
49 |
+
self.sd_pipe = None
|
50 |
+
self.script_model = None
|
51 |
+
self.script_tokenizer = None
|
|
|
52 |
|
|
|
53 |
def load_models(self):
|
54 |
+
"""Load ZeroGPU-compatible models for professional generation"""
|
55 |
try:
|
56 |
+
print("🚀 Loading ZeroGPU-compatible models...")
|
|
|
|
|
|
|
57 |
|
58 |
+
# Clear memory
|
59 |
+
gc.collect()
|
|
|
60 |
|
61 |
print(f"🎮 Using device: {self.device} with dtype: {self.dtype}")
|
62 |
|
63 |
+
# Load Stable Diffusion (CPU optimized)
|
64 |
+
print("🔄 Loading Stable Diffusion (CPU optimized)...")
|
65 |
+
from diffusers import StableDiffusionPipeline, DDIMScheduler
|
66 |
+
|
67 |
+
self.sd_pipe = StableDiffusionPipeline.from_pretrained(
|
68 |
+
"CompVis/stable-diffusion-v1-4",
|
69 |
+
torch_dtype=self.dtype,
|
70 |
+
safety_checker=None,
|
71 |
+
requires_safety_checker=False,
|
72 |
+
device_map=None # Force CPU usage
|
73 |
+
)
|
74 |
+
|
75 |
+
# Configure scheduler for better quality
|
76 |
+
self.sd_pipe.scheduler = DDIMScheduler.from_config(self.sd_pipe.scheduler.config)
|
77 |
+
|
78 |
+
# Force CPU usage for ZeroGPU
|
79 |
+
self.sd_pipe = self.sd_pipe.to("cpu")
|
80 |
+
self.sd_pipe.enable_sequential_cpu_offload() # Memory optimization
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
print("✅ Loaded Stable Diffusion v1.4 (CPU optimized)")
|
|
|
83 |
|
84 |
+
# Load script enhancement model (CPU optimized)
|
85 |
print("📝 Loading script enhancement model...")
|
86 |
self.script_model = AutoModelForCausalLM.from_pretrained(
|
87 |
"microsoft/DialoGPT-medium",
|
88 |
torch_dtype=self.dtype,
|
89 |
+
device_map=None # Force CPU usage
|
90 |
)
|
91 |
self.script_tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
92 |
|
93 |
if self.script_tokenizer.pad_token is None:
|
94 |
self.script_tokenizer.pad_token = self.script_tokenizer.eos_token
|
95 |
|
96 |
+
# Force CPU usage
|
97 |
+
self.script_model = self.script_model.to("cpu")
|
98 |
|
99 |
print(f"Device set to use {self.device}")
|
100 |
+
print("✅ Script enhancer loaded (CPU optimized)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
print("🎬 All ZeroGPU-compatible models loaded!")
|
103 |
return True
|
104 |
|
105 |
except Exception as e:
|
|
|
109 |
return False
|
110 |
|
111 |
def clear_gpu_memory(self):
|
112 |
+
"""Clear memory (CPU-focused for ZeroGPU)"""
|
113 |
+
gc.collect()
|
|
|
|
|
114 |
|
115 |
def optimize_prompt_for_clip(self, prompt: str, max_tokens: int = 70) -> str:
|
116 |
"""Optimize prompt to fit within CLIP token limit"""
|
|
|
148 |
return download_info
|
149 |
|
150 |
except Exception as e:
|
151 |
+
return f"📥 Generated {file_type} (download info unavailable: {e})"
|
|
|
152 |
|
153 |
def generate_professional_script(self, user_input: str) -> Dict[str, Any]:
|
154 |
"""Generate a professional cartoon script with detailed character development"""
|
|
|
393 |
}
|
394 |
return palettes.get(mood, "balanced warm and cool tones")
|
395 |
|
|
|
396 |
def generate_professional_character_images(self, characters: List[Dict]) -> Dict[str, str]:
|
397 |
+
"""Generate professional character images with consistency (ZeroGPU compatible)"""
|
398 |
character_images = {}
|
399 |
|
400 |
print(f"🎭 Generating {len(characters)} professional character designs...")
|
401 |
|
402 |
+
# Check if we have Stable Diffusion pipeline available
|
403 |
+
if not hasattr(self, 'sd_pipe') or self.sd_pipe is None:
|
404 |
+
print("❌ Stable Diffusion not loaded - please call load_models() first")
|
405 |
return character_images
|
406 |
|
407 |
+
pipeline = self.sd_pipe
|
408 |
+
model_name = "Stable Diffusion (CPU)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
409 |
|
410 |
print(f"🎨 Using {model_name} for character generation")
|
411 |
|
|
|
414 |
print(f"\n🎨 Generating character: {character_name}")
|
415 |
|
416 |
try:
|
417 |
+
# Build comprehensive character prompt for CPU generation
|
418 |
base_prompt = f"Professional cartoon character design, {character['name']}, {character['description']}"
|
419 |
|
420 |
+
# CPU-optimized prompt
|
421 |
+
prompt = f"{base_prompt}, anime style, cartoon character, clean background, high quality, detailed, 2D animation style, character sheet, simple design"
|
|
|
|
|
|
|
|
|
|
|
422 |
|
423 |
# Optimize prompt for CLIP
|
424 |
+
prompt = self.optimize_prompt_for_clip(prompt, max_tokens=60) # Shorter for CPU
|
425 |
print(f"📝 Character prompt: {prompt}")
|
426 |
|
427 |
+
# CPU-optimized generation settings
|
428 |
+
image = pipeline(
|
429 |
+
prompt=prompt,
|
430 |
+
width=512, # Smaller for CPU
|
431 |
+
height=512,
|
432 |
+
num_inference_steps=20, # Fewer steps for CPU
|
433 |
+
guidance_scale=7.5,
|
434 |
+
generator=torch.Generator(device="cpu").manual_seed(42)
|
435 |
+
).images[0]
|
436 |
+
|
437 |
+
# Upscale for better quality
|
438 |
+
image = image.resize((1024, 1024), Image.Resampling.LANCZOS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
439 |
|
440 |
# Save character image
|
441 |
char_path = f"{self.output_dir}/char_{character['name'].replace(' ', '_')}.png"
|
|
|
453 |
print(f" 📁 Internal path: {char_path}")
|
454 |
print(download_info)
|
455 |
|
456 |
+
# Clear memory after each generation
|
457 |
+
gc.collect()
|
|
|
|
|
458 |
else:
|
459 |
print(f"❌ Failed to save character image: {char_path}")
|
460 |
|
|
|
472 |
|
473 |
return character_images
|
474 |
|
|
|
475 |
def generate_cinematic_backgrounds(self, scenes: List[Dict], color_palette: str) -> Dict[int, str]:
|
476 |
+
"""Generate professional cinematic backgrounds for each scene (ZeroGPU compatible)"""
|
477 |
background_images = {}
|
478 |
|
479 |
print(f"🎞️ Generating {len(scenes)} cinematic backgrounds...")
|
480 |
|
481 |
+
# Check if we have Stable Diffusion pipeline available
|
482 |
+
if not hasattr(self, 'sd_pipe') or self.sd_pipe is None:
|
483 |
+
print("❌ Stable Diffusion not loaded - please call load_models() first")
|
484 |
return background_images
|
485 |
|
486 |
+
pipeline = self.sd_pipe
|
487 |
+
model_name = "Stable Diffusion (CPU)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
488 |
|
489 |
print(f"🎨 Using {model_name} for background generation")
|
490 |
|
|
|
493 |
print(f"\n🌄 Generating background for scene {scene_num}")
|
494 |
|
495 |
try:
|
496 |
+
# Build cinematic background prompt for CPU generation
|
497 |
background_desc = scene['background']
|
498 |
mood = scene.get('mood', 'neutral')
|
499 |
shot_type = scene.get('shot_type', 'medium shot')
|
|
|
501 |
|
502 |
base_prompt = f"Cinematic background scene, {background_desc}, {mood} atmosphere, {lighting}"
|
503 |
|
504 |
+
# CPU-optimized prompt
|
505 |
+
prompt = f"{base_prompt}, anime style background, detailed landscape, high quality, cinematic, {color_palette} color palette, no people, simple design"
|
|
|
|
|
|
|
506 |
|
507 |
# Optimize for CLIP
|
508 |
+
prompt = self.optimize_prompt_for_clip(prompt, max_tokens=60) # Shorter for CPU
|
509 |
print(f"📝 Background prompt: {prompt}")
|
510 |
|
511 |
+
# CPU-optimized generation settings
|
512 |
+
image = pipeline(
|
513 |
+
prompt=prompt,
|
514 |
+
width=512, # Smaller for CPU
|
515 |
+
height=384, # 4:3 aspect ratio
|
516 |
+
num_inference_steps=20, # Fewer steps for CPU
|
517 |
+
guidance_scale=7.5,
|
518 |
+
generator=torch.Generator(device="cpu").manual_seed(scene_num * 10)
|
519 |
+
).images[0]
|
520 |
+
|
521 |
+
# Upscale for better quality
|
522 |
+
image = image.resize((1024, 768), Image.Resampling.LANCZOS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
523 |
|
524 |
# Save background image
|
525 |
bg_path = f"{self.output_dir}/bg_scene_{scene_num}.png"
|
|
|
537 |
print(f" 📁 Internal path: {bg_path}")
|
538 |
print(download_info)
|
539 |
|
540 |
+
# Clear memory after each generation
|
541 |
+
gc.collect()
|
|
|
|
|
542 |
else:
|
543 |
print(f"❌ Failed to save background image: {bg_path}")
|
544 |
|
|
|
561 |
try:
|
562 |
print("🎬 Setting up Open-Sora 2.0 for video generation...")
|
563 |
|
564 |
+
# Import torch here to avoid the UnboundLocalError
|
565 |
+
import torch
|
566 |
+
|
567 |
# Check available GPU memory
|
568 |
if torch.cuda.is_available():
|
569 |
gpu_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
|
|
|
671 |
traceback.print_exc()
|
672 |
return False
|
673 |
|
|
|
674 |
def generate_professional_videos(self, scenes: List[Dict], character_images: Dict, background_images: Dict) -> List[str]:
|
675 |
"""Generate professional videos using Open-Sora 2.0"""
|
676 |
scene_videos = []
|
|
|
1025 |
return None
|
1026 |
|
1027 |
def _create_emergency_fallback_video(self, script_data: Dict) -> str:
|
1028 |
+
"""Create emergency fallback video when all else fails"""
|
1029 |
try:
|
1030 |
print("🆘 Creating emergency fallback video...")
|
1031 |
|
|
|
1032 |
width, height = 1024, 768
|
1033 |
background_color = (100, 150, 200) # Blue-ish color
|
1034 |
|
|
|
1047 |
|
1048 |
# Create simple animated background
|
1049 |
for i in range(total_frames):
|
1050 |
+
# Create frame with proper uint8 type
|
1051 |
frame = np.full((height, width, 3), background_color, dtype=np.uint8)
|
1052 |
|
1053 |
+
# Add simple animation (color shift) with proper clamping
|
1054 |
progress = i / total_frames
|
1055 |
color_shift = int(50 * np.sin(progress * 2 * np.pi))
|
1056 |
+
|
1057 |
+
# Ensure all values stay within uint8 bounds (0-255)
|
1058 |
+
new_blue = np.clip(frame[:, :, 0].astype(np.int16) + color_shift, 0, 255).astype(np.uint8)
|
1059 |
+
frame[:, :, 0] = new_blue
|
1060 |
|
1061 |
# Add text
|
1062 |
font = cv2.FONT_HERSHEY_SIMPLEX
|
|
|
1080 |
|
1081 |
except Exception as e:
|
1082 |
print(f"❌ Emergency fallback video creation failed: {e}")
|
1083 |
+
import traceback
|
1084 |
+
traceback.print_exc()
|
1085 |
return None
|
1086 |
|
1087 |
def merge_professional_film(self, scene_videos: List[str], script_data: Dict) -> str:
|
|
|
1125 |
print(f"❌ Video merging failed: {e}")
|
1126 |
return None
|
1127 |
|
|
|
1128 |
def generate_professional_cartoon_film(self, script: str) -> tuple:
|
1129 |
+
"""Main function to generate professional-quality cartoon film (ZeroGPU compatible)"""
|
1130 |
try:
|
1131 |
print("🎬 Starting professional cartoon film generation...")
|
1132 |
|
1133 |
+
# Step 0: Load models first (critical!)
|
1134 |
+
print("🚀 Loading AI models...")
|
1135 |
+
models_loaded = self.load_models()
|
1136 |
+
if not models_loaded:
|
1137 |
+
print("❌ Failed to load models - cannot generate content")
|
1138 |
+
error_info = {
|
1139 |
+
"error": True,
|
1140 |
+
"message": "Failed to load AI models",
|
1141 |
+
"characters": [],
|
1142 |
+
"scenes": [],
|
1143 |
+
"style": "Model loading failed"
|
1144 |
+
}
|
1145 |
+
return None, error_info, "❌ Failed to load AI models", [], []
|
1146 |
+
|
1147 |
# Step 1: Generate professional script
|
1148 |
print("📝 Creating professional script structure...")
|
1149 |
script_data = self.generate_professional_script(script)
|
|
|
1400 |
# Initialize professional generator
|
1401 |
generator = ProfessionalCartoonFilmGenerator()
|
1402 |
|
|
|
1403 |
def create_professional_cartoon_film(script):
|
1404 |
+
"""Gradio interface function for professional generation (ZeroGPU compatible)"""
|
1405 |
if not script.strip():
|
1406 |
empty_response = {
|
1407 |
"error": True,
|
|
|
1421 |
"scenes": [],
|
1422 |
"style": "Please wait for current generation to complete"
|
1423 |
}
|
1424 |
+
return None, busy_response, "⏳ Generation already in progress - please wait", [], []
|
1425 |
|
1426 |
try:
|
1427 |
return generator.generate_professional_cartoon_film(script)
|