Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from diffusers import StableDiffusionInpaintPipeline
|
6 |
+
from segment_anything import sam_model_registry, SamPredictor
|
7 |
+
from groundingdino.util.inference import load_model, load_image, predict, annotate
|
8 |
+
|
9 |
+
# Device configuration
|
10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
|
12 |
+
# Load Grounding DINO (human detection)
|
13 |
+
grounding_model = load_model("ShilongLiu/GroundingDINO-SwinB") # Public Hugging Face model
|
14 |
+
|
15 |
+
# Load SAM model
|
16 |
+
sam_checkpoint = "facebook/sam-vit-huge"
|
17 |
+
sam = sam_model_registry["vit_h"](checkpoint=sam_checkpoint)
|
18 |
+
sam.to(device)
|
19 |
+
predictor = SamPredictor(sam)
|
20 |
+
|
21 |
+
# Load Stable Diffusion Inpainting Pipeline
|
22 |
+
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
23 |
+
"stabilityai/stable-diffusion-2-inpainting",
|
24 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32
|
25 |
+
)
|
26 |
+
pipe = pipe.to(device)
|
27 |
+
|
28 |
+
def detect_and_segment(input_image, prompt):
|
29 |
+
# Convert image to numpy
|
30 |
+
image_np = np.array(input_image)
|
31 |
+
predictor.set_image(image_np)
|
32 |
+
|
33 |
+
# Grounding DINO detection
|
34 |
+
boxes, logits, phrases = predict(
|
35 |
+
model=grounding_model,
|
36 |
+
image=input_image,
|
37 |
+
caption=prompt,
|
38 |
+
box_threshold=0.35,
|
39 |
+
text_threshold=0.25
|
40 |
+
)
|
41 |
+
|
42 |
+
if len(boxes) == 0:
|
43 |
+
return None, None, "No objects detected."
|
44 |
+
|
45 |
+
# Prepare mask
|
46 |
+
transformed_boxes = boxes * torch.tensor([input_image.width, input_image.height, input_image.width, input_image.height])
|
47 |
+
transformed_boxes = transformed_boxes.cpu().numpy()
|
48 |
+
|
49 |
+
input_points = []
|
50 |
+
input_labels = []
|
51 |
+
for box in transformed_boxes:
|
52 |
+
x_center = int((box[0] + box[2]) / 2)
|
53 |
+
y_center = int((box[1] + box[3]) / 2)
|
54 |
+
input_points.append([x_center, y_center])
|
55 |
+
input_labels.append(1)
|
56 |
+
|
57 |
+
masks, _, _ = predictor.predict(
|
58 |
+
point_coords=np.array(input_points),
|
59 |
+
point_labels=np.array(input_labels),
|
60 |
+
multimask_output=False,
|
61 |
+
)
|
62 |
+
|
63 |
+
final_mask = np.zeros_like(masks[0])
|
64 |
+
for mask in masks:
|
65 |
+
final_mask = np.logical_or(final_mask, mask)
|
66 |
+
|
67 |
+
final_mask = (final_mask * 255).astype(np.uint8)
|
68 |
+
mask_image = Image.fromarray(final_mask).convert("L")
|
69 |
+
return input_image, mask_image, "Mask generated successfully."
|
70 |
+
|
71 |
+
def inpaint(input_image, mask_image, inpaint_prompt):
|
72 |
+
if input_image is None or mask_image is None or inpaint_prompt == "":
|
73 |
+
return None
|
74 |
+
|
75 |
+
image_resized = input_image.resize((512, 512))
|
76 |
+
mask_resized = mask_image.resize((512, 512))
|
77 |
+
|
78 |
+
output = pipe(
|
79 |
+
prompt=inpaint_prompt,
|
80 |
+
image=image_resized,
|
81 |
+
mask_image=mask_resized
|
82 |
+
).images[0]
|
83 |
+
|
84 |
+
# Resize back to original
|
85 |
+
output = output.resize(input_image.size)
|
86 |
+
return output
|
87 |
+
|
88 |
+
# Gradio UI
|
89 |
+
with gr.Blocks() as demo:
|
90 |
+
gr.Markdown("## Remove Humans and Replace with Cartoon / Imaginary Characters")
|
91 |
+
|
92 |
+
with gr.Row():
|
93 |
+
input_image = gr.Image(type="pil", label="Upload Image")
|
94 |
+
mask_display = gr.Image(type="pil", label="Generated Mask")
|
95 |
+
output_image = gr.Image(type="pil", label="Final Output")
|
96 |
+
|
97 |
+
detect_prompt = gr.Textbox(label="Detection Prompt", value="human", placeholder="What objects to detect? (e.g., human)")
|
98 |
+
inpaint_prompt = gr.Textbox(label="Inpainting Prompt", placeholder="What to replace with? (e.g., cartoon human, anime boy)")
|
99 |
+
|
100 |
+
detect_button = gr.Button("Detect and Generate Mask")
|
101 |
+
inpaint_button = gr.Button("Inpaint with Replacement")
|
102 |
+
|
103 |
+
detect_button.click(fn=detect_and_segment, inputs=[input_image, detect_prompt], outputs=[input_image, mask_display, gr.Textbox(label="Status")])
|
104 |
+
inpaint_button.click(fn=inpaint, inputs=[input_image, mask_display, inpaint_prompt], outputs=output_image)
|
105 |
+
|
106 |
+
demo.launch()
|