File size: 5,436 Bytes
aaf8cf2
 
9cb381b
aaf8cf2
 
 
9cb381b
aaf8cf2
 
 
 
 
 
 
9cb381b
aaf8cf2
9cb381b
aaf8cf2
9cb381b
aaf8cf2
 
9cb381b
 
 
 
 
 
 
 
 
aaf8cf2
 
 
 
 
 
9cb381b
 
aaf8cf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cb381b
aaf8cf2
7cc26e2
9cb381b
 
 
 
 
 
aaf8cf2
9cb381b
 
 
 
 
 
 
aaf8cf2
9cb381b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaf8cf2
9cb381b
 
 
aaf8cf2
9cb381b
 
 
 
 
 
 
 
 
 
 
 
 
 
aaf8cf2
 
 
 
9cb381b
aaf8cf2
 
 
9cb381b
 
aaf8cf2
 
 
9cb381b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import logging
from typing import Optional, Dict, Any, Tuple
from huggingface_hub import InferenceClient
from utils.meldrx import MeldRxAPI
from utils.pdfutils import PDFGenerator
from utils.responseparser import PatientDataExtractor
from datetime import datetime

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
    raise ValueError("HF_TOKEN environment variable not set.")
client = InferenceClient(api_key=HF_TOKEN)
MODEL_NAME = "meta-llama/Llama-3.3-70B-Instruct"

def generate_ai_discharge_summary(patient_dict: Dict[str, str]) -> Optional[str]:
    try:
        patient_info = (
            f"Patient Name: {patient_dict['first_name']} {patient_dict['last_name']}\n"
            f"Gender: {patient_dict['sex']}\n"
            f"Age: {patient_dict['age']}\n"
            f"Date of Birth: {patient_dict['dob']}\n"
            f"Admission Date: {patient_dict['admission_date']}\n"
            f"Discharge Date: {patient_dict['discharge_date']}\n\n"
            f"Diagnosis:\n{patient_dict['diagnosis']}\n\n"
            f"Medications:\n{patient_dict['medications']}\n\n"
            f"Discharge Instructions:\n[Generated based on available data]"
        )

        messages = [
            {
                "role": "assistant",
                "content": (
                    "You are a senior medical practitioner tasked with creating discharge summaries. "
                    "Generate a complete discharge summary based on the provided patient information."
                )
            },
            {"role": "user", "content": patient_info}
        ]

        stream = client.chat.completions.create(
            model=MODEL_NAME,
            messages=messages,
            temperature=0.4,
            max_tokens=3584,
            top_p=0.7,
            stream=True
        )

        discharge_summary = ""
        for chunk in stream:
            content = chunk.choices[0].delta.content
            if content:
                discharge_summary += content

        return discharge_summary.strip()

    except Exception as e:
        logger.error(f"Error generating AI discharge summary: {str(e)}")
        return None

def generate_discharge_paper_one_click(
    meldrx_api: MeldRxAPI,
    patient_id: str = None,
    first_name: str = None,
    last_name: str = None
) -> Tuple[Optional[str], str, Optional[str]]:
    try:
        if not meldrx_api.access_token:
            if not meldrx_api.authenticate():
                return None, "Error: Authentication failed. Please authenticate first.", None

        patient_data = meldrx_api.get_patients()
        if not patient_data or "entry" not in patient_data:
            return None, "Error: Failed to fetch patient data.", None

        extractor = PatientDataExtractor(patient_data, format_type="json")
        patients = extractor.get_all_patients()

        if not patients:
            return None, "Error: No patients found in the workspace.", None

        patient_dict = None
        if patient_id:
            for p in patients:
                extractor.set_patient_by_index(patients.index(p))
                if extractor.get_id() == patient_id:
                    patient_dict = p
                    break
            if not patient_dict:
                return None, f"Error: Patient with ID {patient_id} not found.", None
        elif first_name and last_name:
            patient_dict = next(
                (p for p in patients if
                 p["first_name"].lower() == first_name.lower() and
                 p["last_name"].lower() == last_name.lower()),
                None
            )
            if not patient_dict:
                return None, f"Error: Patient with name {first_name} {last_name} not found.", None
        else:
            patient_dict = patients[0]

        ai_content = generate_ai_discharge_summary(patient_dict)
        if not ai_content:
            return None, "Error: Failed to generate AI discharge summary.", None

        display_summary = (
            f"<div style='color:#00FFFF; font-family: monospace;'>"
            f"<strong>Discharge Summary Preview</strong><br>"
            f"- Name: {patient_dict['first_name']} {patient_dict['last_name']}<br>"
            f"- DOB: {patient_dict['dob']}, Age: {patient_dict['age']}, Sex: {patient_dict['sex']}<br>"
            f"- Address: {patient_dict['address']}, {patient_dict['city']}, {patient_dict['state']} {patient_dict['zip_code']}<br>"
            f"- Admission Date: {patient_dict['admission_date']}<br>"
            f"- Discharge Date: {patient_dict['discharge_date']}<br>"
            f"- Diagnosis: {patient_dict['diagnosis']}<br>"
            f"- Medications: {patient_dict['medications']}<br>"
            f"</div>"
        )

        pdf_generator = PDFGenerator()
        pdf_path = pdf_generator.generate_pdf_from_text(
            ai_content,
            f"discharge_summary_{patient_id or 'unknown'}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.pdf"
        )

        if pdf_path:
            return pdf_path, f"Success: Discharge paper generated for {patient_dict['first_name']} {patient_dict['last_name']}", display_summary
        return None, "Error: Failed to generate PDF.", display_summary

    except Exception as e:
        logger.error(f"Error in one-click discharge generation: {str(e)}")
        return None, f"Error: {str(e)}", None