File size: 19,259 Bytes
f3434ed
edecf53
d607da0
 
 
 
 
 
 
 
 
 
 
 
baacef2
 
 
 
 
edecf53
f3434ed
 
 
d607da0
246cf8f
 
d607da0
246cf8f
baacef2
 
 
246cf8f
baacef2
246cf8f
 
 
baacef2
 
 
d607da0
246cf8f
 
 
 
 
 
 
 
d607da0
 
 
 
 
 
0093774
d607da0
 
 
0093774
d607da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0093774
 
 
 
 
 
 
 
 
d607da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baacef2
d607da0
 
 
 
 
 
 
 
aa352fb
d607da0
 
 
 
 
 
 
 
aa352fb
d607da0
 
 
 
 
 
 
 
 
 
246cf8f
d607da0
 
 
 
 
 
 
 
 
 
 
 
aa352fb
d607da0
 
 
 
 
 
 
 
 
 
 
 
f3434ed
d607da0
 
 
 
 
aa352fb
66f1fae
d607da0
 
 
 
 
 
 
 
 
ed32658
d607da0
 
 
aa352fb
d607da0
 
 
 
 
 
 
 
 
 
 
 
aa352fb
d607da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0093774
 
d607da0
0093774
d607da0
 
0093774
 
 
 
 
 
 
 
 
d607da0
 
0093774
d607da0
 
 
 
 
 
0093774
d607da0
 
 
0093774
 
 
 
d607da0
0093774
d607da0
aa352fb
d607da0
 
0093774
 
d607da0
 
0093774
 
 
 
 
 
 
2f4c67f
0093774
2f4c67f
d607da0
 
0093774
 
d607da0
 
 
0093774
2f4c67f
 
 
 
d607da0
 
 
 
 
0093774
 
 
 
 
f3434ed
0093774
 
 
d607da0
aa352fb
d607da0
 
 
 
 
 
 
aa352fb
d607da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa352fb
d607da0
 
 
 
aa352fb
d607da0
 
aa352fb
d607da0
 
 
 
 
aa352fb
0093774
d607da0
aa352fb
d607da0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import os
import pandas as pd
import torch
from sentence_transformers import SentenceTransformer, util
import faiss
import numpy as np
import pickle
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import scipy.special
from tqdm import tqdm
from tabulate import tabulate
from sklearn.feature_extraction.text import TfidfVectorizer
from multiprocessing import Pool, cpu_count
from flask import Flask, request, jsonify
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Disable tokenizers parallelism to avoid fork-related deadlocks
os.environ["TOKENIZERS_PARALLELISM"] = "false"

# Paths for saving artifacts
MODEL_DIR = "./saved_models"  # Primary location in /app/saved_models
FALLBACK_MODEL_DIR = "/tmp/saved_models"  # Fallback if ./saved_models fails

# Try to use the primary directory, fall back to /tmp if needed
try:
    os.makedirs(MODEL_DIR, exist_ok=True)
    logger.info(f"Successfully created/accessed directory: {MODEL_DIR}")
    chosen_model_dir = MODEL_DIR
except PermissionError as e:
    logger.warning(f"Permission denied creating directory {MODEL_DIR}: {e}. Falling back to {FALLBACK_MODEL_DIR}")
    os.makedirs(FALLBACK_MODEL_DIR, exist_ok=True)
    chosen_model_dir = FALLBACK_MODEL_DIR
except Exception as e:
    logger.error(f"Unexpected error creating directory {MODEL_DIR}: {e}")
    raise

# Update paths based on the chosen directory
UNIVERSAL_MODEL_PATH = os.path.join(chosen_model_dir, "universal_model")
DETECTOR_MODEL_PATH = os.path.join(chosen_model_dir, "detector_model")
TFIDF_PATH = os.path.join(chosen_model_dir, "tfidf_vectorizer.pkl")
SKILL_TFIDF_PATH = os.path.join(chosen_model_dir, "skill_tfidf.pkl")
QUESTION_ANSWER_PATH = os.path.join(chosen_model_dir, "question_to_answer.pkl")
FAISS_INDEX_PATH = os.path.join(chosen_model_dir, "faiss_index.index")

# Load Datasets
def load_dataset(file_path, required_columns=[]):
    try:
        df = pd.read_csv(file_path)
        for col in required_columns:
            if col not in df.columns:
                logger.warning(f"Column '{col}' missing in {file_path}. Using default values.")
                df[col] = "" if col != 'level' else 'Intermediate'
        return df
    except FileNotFoundError:
        logger.error(f"Dataset not found at {file_path}. Exiting.")
        return None

user_df = load_dataset("Updated_User_Profile_Dataset.csv", ["name", "skills", "level"])
questions_df = load_dataset("Generated_Skill-Based_Questions.csv", ["Skill", "Question", "Answer"])
courses_df = load_dataset("coursera_course_dataset_v2_no_null.csv", ["skills", "course_title", "Organization", "level"])
jobs_df = load_dataset("Updated_Job_Posting_Dataset.csv", ["job_title", "company_name", "location", "required_skills", "job_description"])

# Simulate courses_df with relevant skills
if courses_df is None or 'skills' not in courses_df.columns or courses_df['skills'].str.strip().eq('').all():
    courses_df = pd.DataFrame({
        'skills': ['Docker', 'Jenkins', 'Azure', 'Cybersecurity'],
        'course_title': ['Docker Mastery', 'Jenkins CI/CD', 'Azure Fundamentals', 'Cybersecurity Basics'],
        'Organization': ['Udemy', 'Coursera', 'Microsoft', 'edX'],
        'level': ['Intermediate', 'Intermediate', 'Intermediate', 'Advanced'],
        'popularity': [0.9, 0.85, 0.95, 0.8],
        'completion_rate': [0.7, 0.65, 0.8, 0.6]
    })

# Validate questions_df
if questions_df is None or questions_df.empty:
    logger.error("questions_df is empty or could not be loaded. Exiting.")
    exit(1)
if not all(col in questions_df.columns for col in ["Skill", "Question", "Answer"]):
    logger.error("questions_df is missing required columns. Exiting.")
    exit(1)
logger.info(f"questions_df loaded with {len(questions_df)} rows. Skills available: {questions_df['Skill'].unique().tolist()}")

# Load or Initialize Models
if os.path.exists(UNIVERSAL_MODEL_PATH):
    universal_model = SentenceTransformer(UNIVERSAL_MODEL_PATH)
else:
    universal_model = SentenceTransformer("all-MiniLM-L6-v2")

if os.path.exists(DETECTOR_MODEL_PATH):
    detector_tokenizer = AutoTokenizer.from_pretrained(DETECTOR_MODEL_PATH)
    detector_model = AutoModelForSequenceClassification.from_pretrained(DETECTOR_MODEL_PATH)
else:
    detector_tokenizer = AutoTokenizer.from_pretrained("roberta-base-openai-detector")
    detector_model = AutoModelForSequenceClassification.from_pretrained("roberta-base-openai-detector")

# Precompute Resources with Validation
def resources_valid(saved_skills, current_skills):
    return set(saved_skills) == set(current_skills)

def initialize_resources(user_skills):
    global tfidf_vectorizer, skill_tfidf, question_to_answer, faiss_index, answer_embeddings
    if (os.path.exists(TFIDF_PATH) and os.path.exists(SKILL_TFIDF_PATH) and 
        os.path.exists(QUESTION_ANSWER_PATH) and os.path.exists(FAISS_INDEX_PATH)):
        with open(TFIDF_PATH, 'rb') as f:
            tfidf_vectorizer = pickle.load(f)
        with open(SKILL_TFIDF_PATH, 'rb') as f:
            skill_tfidf = pickle.load(f)
        with open(QUESTION_ANSWER_PATH, 'rb') as f:
            question_to_answer = pickle.load(f)
        faiss_index = faiss.read_index(FAISS_INDEX_PATH)
        answer_embeddings = universal_model.encode(list(question_to_answer.values()), convert_to_tensor=True, show_progress_bar=False).cpu().numpy()
        
        if not resources_valid(skill_tfidf.keys(), [s.lower() for s in user_skills]):
            logger.info("⚠ Saved skill TF-IDF mismatch detected. Recomputing resources.")
            tfidf_vectorizer = TfidfVectorizer(stop_words='english')
            all_texts = user_skills + questions_df['Answer'].fillna("").tolist() + questions_df['Question'].tolist()
            tfidf_vectorizer.fit(all_texts)
            skill_tfidf = {skill.lower(): tfidf_vectorizer.transform([skill.lower()]).toarray()[0] for skill in user_skills}
            question_to_answer = dict(zip(questions_df['Question'], questions_df['Answer']))
            answer_embeddings = universal_model.encode(list(question_to_answer.values()), convert_to_tensor=True, show_progress_bar=False).cpu().numpy()
            faiss_index = faiss.IndexFlatL2(answer_embeddings.shape[1])
            faiss_index.add(answer_embeddings)
    else:
        tfidf_vectorizer = TfidfVectorizer(stop_words='english')
        all_texts = user_skills + questions_df['Answer'].fillna("").tolist() + questions_df['Question'].tolist()
        tfidf_vectorizer.fit(all_texts)
        skill_tfidf = {skill.lower(): tfidf_vectorizer.transform([skill.lower()]).toarray()[0] for skill in user_skills}
        question_to_answer = dict(zip(questions_df['Question'], questions_df['Answer']))
        answer_embeddings = universal_model.encode(list(question_to_answer.values()), convert_to_tensor=True, show_progress_bar=False).cpu().numpy()
        faiss_index = faiss.IndexFlatL2(answer_embeddings.shape[1])
        faiss_index.add(answer_embeddings)

        with open(TFIDF_PATH, 'wb') as f:
            pickle.dump(tfidf_vectorizer, f)
        with open(SKILL_TFIDF_PATH, 'wb') as f:
            pickle.dump(skill_tfidf, f)
        with open(QUESTION_ANSWER_PATH, 'wb') as f:
            pickle.dump(question_to_answer, f)
        faiss.write_index(faiss_index, FAISS_INDEX_PATH)
        universal_model.save_pretrained(UNIVERSAL_MODEL_PATH)
        detector_model.save_pretrained(DETECTOR_MODEL_PATH)
        detector_tokenizer.save_pretrained(DETECTOR_MODEL_PATH)
        logger.info(f"Models and resources saved to {chosen_model_dir}")

# Evaluate Responses
def evaluate_response(args):
    skill, user_answer, question = args
    if not user_answer:
        return skill, 0, False
    
    inputs = detector_tokenizer(user_answer, return_tensors="pt", truncation=True, max_length=512)
    with torch.no_grad():
        logits = detector_model(**inputs).logits
    probs = scipy.special.softmax(logits, axis=1).tolist()[0]
    is_ai_generated = probs[1] > 0.5

    user_embedding = universal_model.encode(user_answer, convert_to_tensor=True)
    expected_answer = question_to_answer.get(question, "")
    expected_embedding = universal_model.encode(expected_answer, convert_to_tensor=True)
    score = util.pytorch_cos_sim(user_embedding, expected_embedding).item() * 100

    user_tfidf = tfidf_vectorizer.transform([user_answer]).toarray()[0]
    skill_lower = skill.lower()
    skill_vec = skill_tfidf.get(skill_lower, tfidf_vectorizer.transform([skill_lower]).toarray()[0])
    skill_relevance = np.dot(user_tfidf, skill_vec) / (np.linalg.norm(user_tfidf) * np.linalg.norm(skill_vec) + 1e-10)
    penalty = min(1.0, max(0.5, skill_relevance))
    score *= penalty

    logger.debug(f"Evaluated {skill}: score={score:.2f}, is_ai={is_ai_generated}")
    return skill, round(max(0, score), 2), is_ai_generated

# Recommend Courses
def recommend_courses(skills_to_improve, user_level, upgrade=False):
    if not skills_to_improve:
        return []
    
    skill_embeddings = universal_model.encode(skills_to_improve, convert_to_tensor=True)
    course_embeddings = universal_model.encode(courses_df['skills'].fillna(""), convert_to_tensor=True)
    bert_similarities = util.pytorch_cos_sim(skill_embeddings, course_embeddings).numpy()

    collab_scores = []
    for skill in skills_to_improve:
        overlap = sum(1 for user_skills_str in user_df['skills'] if pd.notna(user_skills_str) and skill.lower() in user_skills_str.lower())
        collab_scores.append(overlap / len(user_df))
    collab_similarities = np.array([collab_scores]).repeat(len(courses_df), axis=0).T

    popularity = courses_df['popularity'].fillna(0.5).to_numpy()
    completion = courses_df['completion_rate'].fillna(0.5).to_numpy()
    total_scores = (0.6 * bert_similarities + 0.2 * collab_similarities + 0.1 * popularity + 0.1 * completion)

    recommended_courses = []
    target_level = 'Advanced' if upgrade else user_level
    for i, skill in enumerate(skills_to_improve):
        top_indices = total_scores[i].argsort()[-5:][::-1]
        candidates = courses_df.iloc[top_indices]
        candidates = candidates[candidates['skills'].str.lower() == skill.lower()]
        if candidates.empty:
            candidates = courses_df.iloc[top_indices]
        candidates.loc[:, "level_match"] = candidates['level'].apply(lambda x: 1 if x == target_level else 0.8 if abs({'Beginner': 0, 'Intermediate': 1, 'Advanced': 2}[x] - {'Beginner': 0, 'Intermediate': 1, 'Advanced': 2}[user_level]) <= 1 else 0.5)
        level_filtered = candidates.sort_values(by="level_match", ascending=False)
        recommended_courses.extend(level_filtered[['course_title', 'Organization']].values.tolist()[:3])
    return list(dict.fromkeys(tuple(course) for course in recommended_courses if course[0].strip()))

# Recommend Jobs
def recommend_jobs(user_skills, user_level):
    job_field = 'required_skills' if 'required_skills' in jobs_df.columns and not jobs_df['required_skills'].str.strip().eq('').all() else 'job_description'
    job_embeddings = universal_model.encode(jobs_df[job_field].fillna(""), convert_to_tensor=True)
    user_embedding = universal_model.encode(" ".join(user_skills), convert_to_tensor=True)
    skill_similarities = util.pytorch_cos_sim(user_embedding, job_embeddings).numpy()[0]

    level_map = {'Beginner': 0, 'Intermediate': 1, 'Advanced': 2}
    user_level_num = level_map[user_level]
    exp_match = jobs_df['level'].fillna('Intermediate').apply(lambda x: 1 - abs(level_map.get(x, 1) - user_level_num) / 2) if 'level' in jobs_df.columns else np.ones(len(jobs_df)) * 0.5
    location_pref = jobs_df['location'].apply(lambda x: 1.0 if x in ['Islamabad', 'Karachi'] else 0.7).to_numpy()
    industry_embeddings = universal_model.encode(jobs_df['job_title'].fillna(""), convert_to_tensor=True)
    industry_similarities = util.pytorch_cos_sim(user_embedding, industry_embeddings).numpy()[0]

    total_job_scores = (0.5 * skill_similarities + 0.2 * exp_match + 0.1 * location_pref + 0.2 * industry_similarities)
    top_job_indices = total_job_scores.argsort()[-5:][::-1]
    return [(jobs_df.iloc[idx]['job_title'], jobs_df.iloc[idx]['company_name'], jobs_df.iloc[idx]['location']) for idx in top_job_indices]

# Main API Endpoint
app = Flask(__name__)

@app.route('/assess', methods=['POST'])
def assess_skills():
    data = request.get_json()
    logger.info(f"Received request: {data}")
    
    if not data or 'user_index' not in data or 'answers' not in data:
        logger.error("Invalid input: Missing 'user_index' or 'answers' in JSON body.")
        return jsonify({"error": "Invalid input. Provide 'user_index' and 'answers' in JSON body."}), 400

    # Validate answers length immediately
    answers = data['answers']
    if not isinstance(answers, list):
        logger.error(f"Answers must be a list, got: {type(answers)}")
        return jsonify({"error": "Answers must be a list."}), 400
    if len(answers) != 4:
        logger.error(f"Expected exactly 4 answers, but received {len(answers)}.")
        return jsonify({"error": f"Please provide exactly 4 answers. Received {len(answers)}."}), 400

    user_index = int(data['user_index'])
    if user_index < 0 or user_index >= len(user_df):
        logger.error(f"Invalid user index: {user_index}. Must be between 0 and {len(user_df) - 1}.")
        return jsonify({"error": "Invalid user index."}), 400

    user_text = user_df.loc[user_index, 'skills']
    user_skills = [skill.strip() for skill in user_text.split(",") if skill.strip()] if isinstance(user_text, str) else ["Python", "SQL"]
    user_name = user_df.loc[user_index, 'name']
    user_level = user_df.loc[user_index, 'level'] if 'level' in user_df.columns and pd.notna(user_df.loc[user_index, 'level']) else 'Intermediate'
    logger.info(f"User: {user_name}, Skills: {user_skills}, Level: {user_level}")

    initialize_resources(user_skills)

    # Normalize skills for case-insensitive matching
    filtered_questions = questions_df[questions_df['Skill'].str.lower().isin([skill.lower() for skill in user_skills])]
    logger.info(f"Filtered questions shape: {filtered_questions.shape}")
    logger.info(f"Available skills in questions_df: {filtered_questions['Skill'].unique().tolist()}")
    if filtered_questions.empty:
        logger.error("No matching questions found for the user's skills.")
        return jsonify({"error": "No matching questions found!"}), 500
    
    user_questions = []
    for skill in user_skills:
        skill_questions = filtered_questions[filtered_questions['Skill'].str.lower() == skill.lower()]
        logger.info(f"Questions for skill '{skill}': {len(skill_questions)}")
        if not skill_questions.empty:
            user_questions.append(skill_questions.sample(1).iloc[0])
        else:
            logger.warning(f"No questions found for skill '{skill}'. Using a default question.")
            user_questions.append({
                'Skill': skill,
                'Question': f"What are the best practices for using {skill} in a production environment?",
                'Answer': f"Best practices for {skill} include proper documentation, monitoring, and security measures."
            })
    user_questions = pd.DataFrame(user_questions).reset_index(drop=True)  # Reset index to ensure sequential indices
    logger.info(f"Selected questions: {user_questions[['Skill', 'Question']].to_dict(orient='records')}")
    logger.info(f"Number of selected questions: {len(user_questions)}")

    if len(user_questions) != 4:
        logger.error(f"Not enough questions for all skills. Expected 4, got {len(user_questions)}.")
        return jsonify({"error": f"Not enough questions for all skills! Expected 4, got {len(user_questions)}."}), 500

    user_responses = []
    for idx, row in user_questions.iterrows():
        logger.debug(f"Pairing question for skill '{row['Skill']}' with answer at index {idx}")
        if idx >= len(answers):
            logger.error(f"Index out of range: idx={idx}, len(answers)={len(answers)}")
            return jsonify({"error": f"Internal error: Index {idx} out of range for answers list of length {len(answers)}."}), 500
        answer = answers[idx]
        if not answer or answer.lower() == 'skip':
            user_responses.append((row['Skill'], None, row['Question']))
        else:
            user_responses.append((row['Skill'], answer, row['Question']))

    try:
        with Pool(cpu_count()) as pool:
            eval_args = [(skill, user_code, question) for skill, user_code, question in user_responses if user_code]
            logger.info(f"Evaluating {len(eval_args)} answers using multiprocessing pool.")
            results = pool.map(evaluate_response, eval_args)
            logger.info(f"Evaluation results: {results}")
    except Exception as e:
        logger.error(f"Error in evaluate_response: {str(e)}", exc_info=True)
        return jsonify({"error": "Failed to evaluate answers due to an internal error."}), 500

    user_scores = {}
    ai_flags = {}
    scores_list = []
    skipped_questions = [f"{skill} ({question})" for skill, user_code, question in user_responses if user_code is None]
    for skill, score, is_ai in results:
        if skill in user_scores:
            user_scores[skill] = max(user_scores[skill], score)
            ai_flags[skill] = ai_flags[skill] or is_ai
        else:
            user_scores[skill] = score
            ai_flags[skill] = is_ai
        scores_list.append(score)

    mean_score = np.mean(scores_list) if scores_list else 50
    dynamic_threshold = max(40, mean_score)
    weak_skills = [skill for skill, score in user_scores.items() if score < dynamic_threshold]

    assessment_results = [
        (skill, f"{'■' * int(score//10)}{'-' * (10 - int(score//10))}", f"{score:.2f}%", "AI-Generated" if ai_flags[skill] else "Human-Written")
        for skill, score in user_scores.items()
    ]
    assessment_output = tabulate(assessment_results, headers=["Skill", "Progress", "Score", "Origin"], tablefmt="grid")
    if skipped_questions:
        assessment_output += f"\nSkipped Questions: {skipped_questions}"
    assessment_output += f"\nMean Score: {mean_score:.2f}, Dynamic Threshold: {dynamic_threshold:.2f}"
    assessment_output += f"\nWeak Skills: {weak_skills if weak_skills else 'None'}"

    skills_to_recommend = weak_skills if weak_skills else user_skills
    upgrade_flag = not weak_skills
    recommended_courses = recommend_courses(skills_to_recommend, user_level, upgrade=upgrade_flag)
    courses_output = tabulate(recommended_courses, headers=["Course", "Organization"], tablefmt="grid") if recommended_courses else "None"

    recommended_jobs = recommend_jobs(user_skills, user_level)
    jobs_output = tabulate(recommended_jobs, headers=["Job Title", "Company", "Location"], tablefmt="grid")

    response = {
        "user_info": f"User: {user_name}\nSkills: {user_skills}\nLevel: {user_level}",
        "assessment_results": assessment_output,
        "recommended_courses": courses_output,
        "recommended_jobs": jobs_output
    }
    logger.info(f"Response: {response}")
    return jsonify(response)

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=7860)