Muhammad-Arham commited on
Commit
156f4b2
·
verified ·
1 Parent(s): 2c8bd9e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -8
app.py CHANGED
@@ -1,13 +1,28 @@
1
  import gradio as gr
2
  import pickle
3
- import sklearn # Ensure scikit-learn is available
 
4
 
5
- # Load the trained model and vectorizer safely
 
 
 
 
6
  try:
7
- model = pickle.load(open('model.pkl', 'rb')) # Ensure correct file name
8
- vectorizer = pickle.load(open('vectorizer.pkl', 'rb'))
 
 
 
 
 
 
 
 
9
  except Exception as e:
10
- print(f"Error loading model: {e}")
 
 
11
 
12
  def predict_sms(message):
13
  try:
@@ -15,7 +30,9 @@ def predict_sms(message):
15
  prediction = model.predict(transformed_text)[0]
16
  return "Spam" if prediction == 1 else "Not Spam"
17
  except Exception as e:
18
- return f"Error: {e}"
 
 
19
 
20
  # Gradio Web Interface
21
  iface = gr.Interface(
@@ -26,5 +43,5 @@ iface = gr.Interface(
26
  description="Enter a message to check if it's spam or not."
27
  )
28
 
29
- # Ensure Hugging Face properly serves the app
30
- iface.launch(server_name="0.0.0.0", server_port=7860)
 
1
  import gradio as gr
2
  import pickle
3
+ import os
4
+ import sys
5
 
6
+ # Add debugging information
7
+ print("Current directory:", os.getcwd())
8
+ print("Files in directory:", os.listdir())
9
+
10
+ # Load the trained model and vectorizer with better error handling
11
  try:
12
+ model_path = 'model.pkl'
13
+ vectorizer_path = 'vectorizer.pkl'
14
+
15
+ print(f"Loading model from {model_path}")
16
+ model = pickle.load(open(model_path, 'rb'))
17
+
18
+ print(f"Loading vectorizer from {vectorizer_path}")
19
+ vectorizer = pickle.load(open(vectorizer_path, 'rb'))
20
+
21
+ print("Model and vectorizer loaded successfully")
22
  except Exception as e:
23
+ print(f"Error loading model or vectorizer: {e}")
24
+ print(f"Python version: {sys.version}")
25
+ print(f"System path: {sys.path}")
26
 
27
  def predict_sms(message):
28
  try:
 
30
  prediction = model.predict(transformed_text)[0]
31
  return "Spam" if prediction == 1 else "Not Spam"
32
  except Exception as e:
33
+ error_msg = f"Error during prediction: {e}"
34
+ print(error_msg)
35
+ return error_msg
36
 
37
  # Gradio Web Interface
38
  iface = gr.Interface(
 
43
  description="Enter a message to check if it's spam or not."
44
  )
45
 
46
+ # For Hugging Face deployment
47
+ iface.launch(server_name="0.0.0.0", server_port=7860)