Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import requests
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import pipeline
|
| 5 |
+
from transformers import BartTokenizer, BartForConditionalGeneration
|
| 6 |
+
|
| 7 |
+
# Replace with your Hugging Face model repository path
|
| 8 |
+
model_repo_path = 'Muh113/husnain'
|
| 9 |
+
|
| 10 |
+
# Load the model and tokenizer
|
| 11 |
+
model = BartForConditionalGeneration.from_pretrained(model_repo_path)
|
| 12 |
+
tokenizer = BartTokenizer.from_pretrained(model_repo_path)
|
| 13 |
+
|
| 14 |
+
# Initialize the summarization pipeline
|
| 15 |
+
summarizer = pipeline('summarization', model=model,tokenizer=tokenizer)
|
| 16 |
+
|
| 17 |
+
# Streamlit app layout
|
| 18 |
+
st.title("Text Summarization App")
|
| 19 |
+
|
| 20 |
+
# User input
|
| 21 |
+
text_input = st.text_area("Enter text to summarize", height=300)
|
| 22 |
+
|
| 23 |
+
# Summarize the text
|
| 24 |
+
if st.button("Summarize"):
|
| 25 |
+
if text_input:
|
| 26 |
+
with st.spinner("Generating summary..."):
|
| 27 |
+
try:
|
| 28 |
+
summary = summarizer(text_input, max_length=150, min_length=30, do_sample=False)
|
| 29 |
+
st.subheader("Summary")
|
| 30 |
+
st.write(summary[0]['summary_text'])
|
| 31 |
+
except Exception as e:
|
| 32 |
+
st.error(f"Error during summarization: {e}")
|
| 33 |
+
else:
|
| 34 |
+
st.warning("Please enter some text to summarize.")
|