import streamlit as st import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Replace with your Hugging Face model repository path model_repo_path = 'Muh113/Minecraft_Query_Wizard' # Check for GPU availability and set the device accordingly device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load the model and tokenizer tokenizer = AutoTokenizer.from_pretrained(model_repo_path) model = AutoModelForSeq2SeqLM.from_pretrained(model_repo_path).to(device) # Streamlit app layout st.title("Minecraft Query Wizard") # User input question_input = st.text_area("Enter a Minecraft-related question", height=150) # Answer the question if st.button("Get Answer"): if question_input: with st.spinner("Generating answer..."): try: # Tokenize the input question inputs = tokenizer(question_input, return_tensors="pt", truncation=True, max_length=116).to(device) # Generate the answer outputs = model.generate(inputs['input_ids'], max_length=150, num_beams=4, early_stopping=True) # Decode the generated answer answer = tokenizer.decode(outputs[0], skip_special_tokens=True) st.subheader("Answer") st.write(answer) except Exception as e: st.error(f"Error during question answering: {e}") else: st.warning("Please enter a question to get an answer.")