Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 4 |
+
|
| 5 |
+
# Replace with your Hugging Face model repository path
|
| 6 |
+
model_repo_path = 'facebook/bart-large'
|
| 7 |
+
|
| 8 |
+
# Check for GPU availability and set device accordingly
|
| 9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 10 |
+
|
| 11 |
+
# Load the model and tokenizer
|
| 12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_repo_path)
|
| 13 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_repo_path).to(device)
|
| 14 |
+
|
| 15 |
+
# Streamlit app layout
|
| 16 |
+
st.title("Minecraft Question Answering App")
|
| 17 |
+
|
| 18 |
+
# User input
|
| 19 |
+
question_input = st.text_area("Enter a Minecraft-related question", height=150)
|
| 20 |
+
|
| 21 |
+
# Answer the question
|
| 22 |
+
if st.button("Get Answer"):
|
| 23 |
+
if question_input:
|
| 24 |
+
with st.spinner("Generating answer..."):
|
| 25 |
+
try:
|
| 26 |
+
# Tokenize the input question
|
| 27 |
+
inputs = tokenizer(question_input, return_tensors="pt", truncation=True, max_length=116).to(device)
|
| 28 |
+
# Generate the answer
|
| 29 |
+
outputs = model.generate(inputs['input_ids'], max_length=150, num_beams=4, early_stopping=True)
|
| 30 |
+
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 31 |
+
st.subheader("Answer")
|
| 32 |
+
st.write(answer)
|
| 33 |
+
except Exception as e:
|
| 34 |
+
st.error(f"Error during question answering: {e}")
|
| 35 |
+
else:
|
| 36 |
+
st.warning("Please enter a question to get an answer.")
|