Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
# Replace with your Hugging Face model repository path | |
model_repo_path = 'Muh113/Bart_Large' | |
# Check for GPU availability and set device accordingly | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load the model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(model_repo_path) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_repo_path).to(device) | |
# Streamlit app layout | |
st.title("Minecraft Question Answering App") | |
# User input | |
question_input = st.text_area("Enter a Minecraft-related question", height=150) | |
# Answer the question | |
if st.button("Get Answer"): | |
if question_input: | |
with st.spinner("Generating answer..."): | |
try: | |
# Tokenize the input question | |
inputs = tokenizer(question_input, return_tensors="pt", truncation=True, max_length=116).to(device) | |
# Generate the answer | |
outputs = model.generate(inputs['input_ids'], max_length=150, num_beams=4, early_stopping=True) | |
# Decode the generated answer | |
answer = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
st.subheader("Answer") | |
st.write(answer) | |
except Exception as e: | |
st.error(f"Error during question answering: {e}") | |
else: | |
st.warning("Please enter a question to get an answer.") | |