Spaces:
No application file
No application file
Commit
·
9989f59
1
Parent(s):
a73c06d
initial Commit
Browse files- Pineconeprac.py +98 -0
Pineconeprac.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from scipy.spatial.distance import cosine
|
| 2 |
+
import pinecone
|
| 3 |
+
from sentence_transformers import SentenceTransformer
|
| 4 |
+
import openai
|
| 5 |
+
|
| 6 |
+
# Initialize Pinecone
|
| 7 |
+
pinecone.init(api_key='3d6a95f6-e9b7-4e87-b96d-ec90392220a8',
|
| 8 |
+
environment='us-west4-gcp')
|
| 9 |
+
|
| 10 |
+
# Initialize the embedding model
|
| 11 |
+
model = SentenceTransformer(
|
| 12 |
+
'sentence-transformers/distilbert-base-nli-mean-tokens')
|
| 13 |
+
|
| 14 |
+
# Define department data
|
| 15 |
+
departments = ["design", "video_production", "marketing"]
|
| 16 |
+
|
| 17 |
+
# Generate embeddings for the departments
|
| 18 |
+
vectors = model.encode(departments)
|
| 19 |
+
|
| 20 |
+
# Create a Pinecone index
|
| 21 |
+
index_name = "mojosolo"
|
| 22 |
+
if index_name in pinecone.list_indexes():
|
| 23 |
+
pinecone.delete_index(name=index_name)
|
| 24 |
+
|
| 25 |
+
pinecone.create_index(name=index_name, dimension=768, metric='cosine')
|
| 26 |
+
|
| 27 |
+
# Insert department vectors into the Pinecone index
|
| 28 |
+
index = pinecone.Index(index_name)
|
| 29 |
+
upsert_response = index.upsert(
|
| 30 |
+
vectors=list(zip(departments, [vector.tolist() for vector in vectors])),
|
| 31 |
+
namespace="example-namespace"
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def get_department(message):
|
| 36 |
+
query_vector = model.encode([message])[0]
|
| 37 |
+
min_distance = 1.0
|
| 38 |
+
best_department = None
|
| 39 |
+
|
| 40 |
+
for department, vector in zip(departments, vectors):
|
| 41 |
+
distance = cosine(query_vector, vector)
|
| 42 |
+
print(f"DEBUG: Department: {department}, Distance: {distance}")
|
| 43 |
+
if distance < min_distance:
|
| 44 |
+
min_distance = distance
|
| 45 |
+
best_department = department
|
| 46 |
+
|
| 47 |
+
if best_department is not None:
|
| 48 |
+
return best_department
|
| 49 |
+
else:
|
| 50 |
+
print("DEBUG: No department found")
|
| 51 |
+
return None
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
openai.api_key = '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'
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def chatbot(message):
|
| 60 |
+
department = get_department(message)
|
| 61 |
+
if department is not None:
|
| 62 |
+
response = openai.Completion.create(
|
| 63 |
+
engine="text-davinci-002",
|
| 64 |
+
prompt=f"[{department}] {message}",
|
| 65 |
+
max_tokens=50,
|
| 66 |
+
n=1,
|
| 67 |
+
stop=None,
|
| 68 |
+
temperature=0.7,
|
| 69 |
+
top_p=0.95,
|
| 70 |
+
)
|
| 71 |
+
return response.choices[0].text.strip()
|
| 72 |
+
else:
|
| 73 |
+
return "Sorry, I couldn't understand your query."
|
| 74 |
+
|
| 75 |
+
while True:
|
| 76 |
+
user_input = input("You:")
|
| 77 |
+
if user_input.lower() == "exit":
|
| 78 |
+
break
|
| 79 |
+
response = chatbot(user_input)
|
| 80 |
+
print(f"Bot: {response}")
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
# Query the Pinecone index using an example sentence
|
| 84 |
+
query_sentence = "We need a new video advertisement campaign."
|
| 85 |
+
query_vector = model.encode([query_sentence])[0]
|
| 86 |
+
query_response = index.query(
|
| 87 |
+
namespace="example-namespace",
|
| 88 |
+
top_k=1,
|
| 89 |
+
vector=query_vector.tolist()
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
# Print the query results
|
| 93 |
+
print("Query results:")
|
| 94 |
+
if query_response.results:
|
| 95 |
+
for result in query_response.results:
|
| 96 |
+
print(f"ID: {result.id}, Distance: {result.distance}")
|
| 97 |
+
else:
|
| 98 |
+
print("No results found.")
|