Spaces:
Running
Running
File size: 8,017 Bytes
7b16419 67c4556 7b16419 f41d308 3358461 7b16419 3358461 67c4556 3358461 67c4556 3358461 67c4556 3358461 67c4556 3358461 67c4556 3358461 7b16419 67c4556 7b16419 3358461 7b16419 3358461 7b16419 67c4556 7b16419 cdbc8d2 7b16419 cdbc8d2 7b16419 cdbc8d2 7b16419 3358461 67c4556 7b16419 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
from fastapi import FastAPI,Request,File,UploadFile
from fastapi.templating import Jinja2Templates
from fastapi.staticfiles import StaticFiles
from fastapi.responses import HTMLResponse,JSONResponse
from fastapi.middleware.cors import CORSMiddleware
import pandas as pd
import re
import io
import base64
import matplotlib.pyplot as plt
import torch
from transformers import pipeline,VisionEncoderDecoderModel,ViTImageProcessor,AutoTokenizer
from transformers import BartForConditionalGeneration, BartTokenizer
from transformers import AutoModelForCausalLM, AutoTokenizer
import fitz
from docx import Document
from pptx import Presentation
import seaborn as sns
import PIL.Image as Image
import fitz
import os
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib"
os.environ["XDG_CACHE_HOME"] = "/tmp/cache"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/transformers"
os.environ["HF_HOME"] = "/tmp/huggingface"
app=FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
try:
#interpreter = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
interpreter_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
interpreter_processor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
interpreter_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
except Exception as exp:
print("[ERROR] Can't load nlpconnect/vit-gpt2-image-captioning")
print(str(exp))
#try:
# summarizer = pipeline("summarization", model="facebook/bart-large-cnn",device=0)
#except Exception as exp:
# print("[ERROR] Can't load facebook/bart-large-cnn ")
# print(str(exp))
try:
summarizer_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
except OSError as e:
print(f"[INFO] PyTorch weights not found. Falling back to TensorFlow weights.\n{e}")
summarizer_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn", from_tf=True)
summarizer_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
#try:
# generator = pipeline("text-generation", model="deepseek-ai/deepseek-coder-1.3b-instruct", device_map="auto")
#except Exception as exp:
# print("[ERROR] Can't load deepseek-ai/deepseek-coder-1.3b-instruct ")
# print(str(exp))
try:
generator_model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-1.3b-instruct", trust_remote_code=True)
tokengenerator_modelizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-1.3b-instruct", trust_remote_code=True)
except Exception as exp :
print("[ERROR] Can't load deepseek-ai/deepseek-coder-1.3b-instruct ")
print(str(exp))
app.mount("/static",StaticFiles(directory='static'),'static')
templates = Jinja2Templates(directory='templates')
@app.get("/",response_class=HTMLResponse)
def index(req:Request):
return templates.TemplateResponse('index.html',{'request':req})
@app.get("/summarization",response_class=HTMLResponse)
def index(req:Request):
return templates.TemplateResponse('Summarization.html',{'request':req})
@app.get("/datavisualisation",response_class=HTMLResponse)
def index(req:Request):
return templates.TemplateResponse('DataVisualisation.html',{'request':req})
@app.get("/imageinterpretation",response_class=HTMLResponse)
def index(req:Request):
return templates.TemplateResponse('ImageInterpretation.html',{'request':req})
@app.post("/caption")
def caption(file:UploadFile=File(...)):
extension = file.filename.split(".")[-1]
Supported_extensions = ["png","jpg","jpeg"]
if extension not in Supported_extensions:
return {"error": "Unsupported file type"}
image = Image.open(file.file)
#caption = interpreter(image)
pixel_values = interpreter_processor(images=image, return_tensors="pt").pixel_values
output_ids = interpreter_model.generate(pixel_values, max_length=16, num_beams=4)
caption = interpreter_tokenizer.decode(output_ids[0], skip_special_tokens=True)
return {"caption":caption}
#return {"caption": caption[0]['generated_text']}
@app.post("/summerize")
def summerzation(file:UploadFile=File(...)):
extension = file.filename.split(".")[-1]
if extension == "pdf":
text = get_text_from_PDF(file.file)
elif extension == "docx":
text = get_text_from_DOC(file.file)
elif extension == "pptx":
text = get_text_from_PPT(file.file)
elif extension == "xlsx":
text = get_text_from_EXCEL(file.file)
else:
return {"error": "Unsupported file type"}
if not text.strip():
return {"error": "File is empty"}
result=""
#for i in range(0,len(text),1024):
# result+=summarizer(text, max_length=150, min_length=30, do_sample=False)[0]['summary_text']
return {"summary": result}
@app.post("/plot")
def plot(prompt:str,file:UploadFile=File(...)):
try:
extension = file.filename.split(".")[-1]
Supported_extensions = ["xlsx","xls"]
if extension not in Supported_extensions:
return {"error": "Unsupported file type"}
df = pd.read_excel(file.file)
message = f"""
You are a helpful assistant that helps users write Python code.
## Requirements:
-you will be given a task and you will write the code to solve the task.
-you have a dataset called **df** contains the following information:
df.columns:{df.columns.to_list()}
df.dtypes:{df.dtypes.to_dict()}
-you have to write the code to solve the task using the dataset df.
-you can use pandas to manipulate the dataframe.
-you can use matplotlib to plot the data.
-you can use seaborn to plot the data.
-don't use print or input statements in the code.
-don't use any other libraries except pandas, matplotlib, seaborn.
-don't use any other functions except the ones provided in the libraries.
-don't write the code for the dataframe creation.
-exclude plt.show() from the code.
-you have to write the code in a markdown code block.
-make sure that the type of the chart is compatible with the dtypes of the columns
-use only the column specified in the task.
-you have to extract the column names and the plot type from the prompt bellow and use them in the code.
-if the user task is not clear or there is an error like the column names are not in the dataframe, raise an
error.
##Prompt: {prompt}.
"""
output = [{"generated_text":""}]#generator(message, max_length=1000)
match = re.search(r'```python(.*?)```', output[0]["generated_text"], re.DOTALL)
code =''
if not match:
return {"error": "Can't generate the plot"}
code = match.group(1).replace("plt.show()\n","")
safe_globals={
"plt": plt,
"sns": sns,
"pd": pd,
"df": df
}
try:
exec(code,safe_globals)
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
base64_image = base64.b64encode(buf.getvalue()).decode('utf-8')
return {"plot": f"data:image/png;base64,{base64_image}"}
except Exception as e:
return {"error": str(e)}
except Exception as exp:
return {"error":"Internel Server Error:"+str(exp)}
def get_text_from_PDF(file):
doc = fitz.open(file, filetype="pdf")
text = ""
for page in doc:
text += page.get_text()
return text
def get_text_from_PPT(file):
prs = Presentation(file)
text = ""
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text += shape.text
return text
def get_text_from_DOC(file):
doc = Document(file)
text = ""
for paragraph in doc.paragraphs:
text += paragraph.text
return text
def get_text_from_EXCEL(file):
df = pd.read_excel(file)
text = df.to_string()
return text |