import gradio as gr import pandas as pd #Models: # IlyaGusev/saiga_llama3_8b # Vikhrmodels/Vikhr-Nemo-12B-Instruct-R-21-09-24 # TinyLlama # Google-gemma-2-27b-it # mistralai/Mistral-Nemo-Instruct-2407 # Vikhrmodels/Vikhr-Qwen-2.5-0.5b-Instruct benchmark_data = { 'Model': ['IlyaGusev/saiga_llama3_8b', 'Vikhrmodels/Vikhr-Nemo-12B-Instruct-R-21-09-24', "TinyLlama", 'Google-gemma-2-27b-it', 'mistralai/Mistral-Nemo-Instruct-2407', 'Vikhrmodels/Vikhr-Qwen-2.5-0.5b-Instruct'], 'Creativity Score': [78.5, 82.3, 85.7, 83.1, 85.6, 76.5, ], 'Coherence Score': [75.2, 80.1, 84.3, 81.9, 88.5, 76.6], 'Diversity Score': [25.3, 27.8, 31.2, 29.5, 28.4, 24.6] } def display_results(): df = pd.DataFrame(benchmark_data) return df # Create the interface with gr.Blocks() as demo: gr.Markdown("# Model Benchmark Results") # Display results in a DataFrame output = gr.Dataframe( headers=["Model", "Creativity Score", "Coherence Score", "Diversity Score"], interactive=False ) # Button to refresh/display results refresh_btn = gr.Button("Show Results") refresh_btn.click(fn=display_results, outputs=output) if __name__ == "__main__": demo.launch()