Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,56 @@
|
|
|
|
1 |
import re
|
2 |
-
import numpy as np
|
3 |
import json
|
4 |
-
from sentence_transformers import SentenceTransformer
|
5 |
-
from transformers import AutoTokenizer
|
6 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
7 |
-
import os
|
8 |
-
import gradio as gr
|
9 |
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
def clean_text(text):
|
16 |
text = re.sub(r'\[speaker_\d+\]', '', text)
|
@@ -43,243 +83,235 @@ def split_text_by_tokens(text, max_tokens=8000):
|
|
43 |
|
44 |
return [" ".join(first_half), " ".join(second_half)]
|
45 |
|
46 |
-
def analyze_segment_with_gemini(segment_text):
|
47 |
-
llm = ChatGoogleGenerativeAI(
|
48 |
-
model="gemini-1.5-flash",
|
49 |
-
temperature=0.7,
|
50 |
-
max_tokens=None,
|
51 |
-
timeout=None,
|
52 |
-
max_retries=3
|
53 |
-
)
|
54 |
-
|
55 |
-
prompt = f"""
|
56 |
-
Analyze the following text and identify distinct segments within it and do text segmentation:
|
57 |
-
1. Segments should be STRICTLY max=15
|
58 |
-
2. For each segment/topic you identify:
|
59 |
-
- Provide a SPECIFIC and UNIQUE topic name (3-5 words) that clearly differentiates it from other segments
|
60 |
-
- List 3-5 key concepts discussed in that segment (be precise and avoid repetition between segments)
|
61 |
-
- Write a brief summary of that segment (3-5 sentences)
|
62 |
-
- Create 5 high-quality, meaningful quiz questions based DIRECTLY on the content in that segment only
|
63 |
-
- Questions and answers should be only from the content of the segment
|
64 |
-
|
65 |
-
For each quiz question:
|
66 |
-
- Create one correct answer that comes DIRECTLY from the text
|
67 |
-
- Create two plausible but incorrect answers
|
68 |
-
- IMPORTANT: Ensure all answer options have similar length (± 3 words)
|
69 |
-
- Ensure the correct answer is clearly indicated with a ✓ symbol
|
70 |
-
- Questions should **require actual understanding**, NOT just basic fact recall.
|
71 |
-
- Questions Are **non-trivial**, encourage deeper thinking, and **avoid surface-level facts**.
|
72 |
-
- Are **directly based on the segment's content** (not inferred from the summary).
|
73 |
-
- Do **not include questions about document structure** (e.g., title, number of paragraphs).
|
74 |
-
- Do **not generate overly generic or obvious questions** (e.g., "What is mentioned in the text?").
|
75 |
-
- Focus on **core ideas, logical reasoning, and conceptual understanding**.
|
76 |
-
|
77 |
-
ADDITIONAL REQUIREMENT:
|
78 |
-
- **First, detect the language of the original text.**
|
79 |
-
- **Generate ALL output (topic names, key concepts, summaries, and quizzes) in the same language as the original text.**
|
80 |
-
- If the text is in Russian, generate all responses in Russian.
|
81 |
-
- If the text is in another language, generate responses in that original language.
|
82 |
-
|
83 |
-
|
84 |
-
Text:
|
85 |
-
{segment_text}
|
86 |
|
87 |
-
Format your response as JSON with the following structure:
|
88 |
-
{{
|
89 |
-
"segments": [
|
90 |
-
{{
|
91 |
-
"topic_name": "Unique and Specific Topic Name",
|
92 |
-
"key_concepts": ["concept1", "concept2", "concept3"],
|
93 |
-
"summary": "Brief summary of this segment.",
|
94 |
-
"quiz_questions": [
|
95 |
-
{{
|
96 |
-
"question": "Question text?",
|
97 |
-
"options": [
|
98 |
-
{{
|
99 |
-
"text": "Option A",
|
100 |
-
"correct": false
|
101 |
-
}},
|
102 |
-
{{
|
103 |
-
"text": "Option B",
|
104 |
-
"correct": true
|
105 |
-
}},
|
106 |
-
{{
|
107 |
-
"text": "Option C",
|
108 |
-
"correct": false
|
109 |
-
}}
|
110 |
-
]
|
111 |
-
}}
|
112 |
-
]
|
113 |
-
}}
|
114 |
-
]
|
115 |
-
}}
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
- **Ensure the quiz questions challenge the reader** and **are not easily guessable**.
|
120 |
|
121 |
-
|
122 |
|
123 |
-
|
124 |
-
response_text = response.content
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
return json.loads(response_text)
|
132 |
-
except json.JSONDecodeError:
|
133 |
-
return {
|
134 |
-
"segments": [
|
135 |
-
{
|
136 |
-
"topic_name": "JSON Parsing Error",
|
137 |
-
"key_concepts": ["Error in response format"],
|
138 |
-
"summary": "Could not parse the API response.",
|
139 |
-
"quiz_questions": []
|
140 |
-
}
|
141 |
-
]
|
142 |
}
|
143 |
-
|
144 |
-
def process_document_with_quiz(text):
|
145 |
-
start_time = time.time()
|
146 |
|
147 |
-
|
148 |
-
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
-
|
163 |
-
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
-
|
170 |
|
171 |
-
|
172 |
-
|
|
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
fallback_segment = {
|
183 |
-
"topic_name": f"Segment {segment_counter} Analysis",
|
184 |
-
"key_concepts": ["Format error in analysis"],
|
185 |
-
"summary": "Could not properly segment this part of the text.",
|
186 |
-
"quiz_questions": [],
|
187 |
-
"segment_number": segment_counter
|
188 |
-
}
|
189 |
-
all_segments.append(fallback_segment)
|
190 |
-
print(f"[LOG] Added fallback segment {segment_counter}")
|
191 |
-
segment_counter += 1
|
192 |
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
return all_segments
|
201 |
-
|
202 |
|
203 |
def format_quiz_for_display(results):
|
204 |
output = []
|
205 |
|
206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
topic = segment["topic_name"]
|
208 |
-
segment_num =
|
209 |
-
|
210 |
output.append(f"\n\n{'='*40}")
|
211 |
output.append(f"SEGMENT {segment_num}: {topic}")
|
212 |
output.append(f"{'='*40}\n")
|
213 |
-
|
214 |
output.append("KEY CONCEPTS:")
|
215 |
for concept in segment["key_concepts"]:
|
216 |
output.append(f"• {concept}")
|
217 |
-
|
218 |
output.append("\nSUMMARY:")
|
219 |
output.append(segment["summary"])
|
220 |
-
|
221 |
output.append("\nQUIZ QUESTIONS:")
|
222 |
for i, q in enumerate(segment["quiz_questions"]):
|
223 |
output.append(f"\n{i+1}. {q['question']}")
|
224 |
-
|
225 |
for j, option in enumerate(q['options']):
|
226 |
-
letter = chr(97 + j).upper()
|
227 |
correct_marker = " ✓" if option["correct"] else ""
|
228 |
output.append(f" {letter}. {option['text']}{correct_marker}")
|
229 |
-
|
230 |
return "\n".join(output)
|
231 |
|
232 |
-
def
|
233 |
-
with open(filename, "w", encoding="utf-8") as f:
|
234 |
-
json.dump(results, f, indent=2, ensure_ascii=False)
|
235 |
-
return filename
|
236 |
-
|
237 |
-
def save_results_as_txt(formatted_text, filename="analysis_results.txt"):
|
238 |
-
with open(filename, "w", encoding="utf-8") as f:
|
239 |
-
f.write(formatted_text)
|
240 |
-
return filename
|
241 |
-
|
242 |
-
|
243 |
-
def analyze_document(document_text, api_key):
|
244 |
-
print(f"[LOG] Starting document analysis...")
|
245 |
-
overall_start_time = time.time()
|
246 |
-
|
247 |
-
os.environ["GOOGLE_API_KEY"] = api_key
|
248 |
try:
|
249 |
-
|
250 |
-
formatted_output = format_quiz_for_display(results)
|
251 |
-
|
252 |
-
json_path = "analysis_results.json"
|
253 |
-
txt_path = "analysis_results.txt"
|
254 |
|
255 |
-
|
256 |
-
|
257 |
|
258 |
-
|
259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
|
261 |
-
|
262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
|
264 |
-
|
265 |
-
|
266 |
-
topics_summary += f"Processing time: {overall_time:.2f} seconds\n\n"
|
267 |
-
topics_summary += "SEGMENTS:\n"
|
268 |
|
269 |
-
|
270 |
-
|
|
|
271 |
|
272 |
-
|
|
|
|
|
|
|
273 |
|
274 |
-
|
|
|
|
|
|
|
|
|
275 |
except Exception as e:
|
276 |
-
|
277 |
-
|
278 |
-
return error_msg, None, None
|
279 |
|
280 |
with gr.Blocks(title="Quiz Generator") as app:
|
281 |
gr.Markdown("# Quiz Generator")
|
282 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
with gr.Row():
|
284 |
with gr.Column():
|
285 |
input_text = gr.Textbox(
|
@@ -289,8 +321,8 @@ with gr.Blocks(title="Quiz Generator") as app:
|
|
289 |
)
|
290 |
|
291 |
api_key = gr.Textbox(
|
292 |
-
label="
|
293 |
-
placeholder="Enter your Gemini API key",
|
294 |
type="password"
|
295 |
)
|
296 |
|
@@ -306,9 +338,9 @@ with gr.Blocks(title="Quiz Generator") as app:
|
|
306 |
|
307 |
analyze_btn.click(
|
308 |
fn=analyze_document,
|
309 |
-
inputs=[input_text, api_key],
|
310 |
outputs=[output_results, json_file_output, txt_file_output]
|
311 |
)
|
312 |
-
|
313 |
if __name__ == "__main__":
|
314 |
app.launch()
|
|
|
1 |
+
import os
|
2 |
import re
|
|
|
3 |
import json
|
|
|
|
|
|
|
|
|
|
|
4 |
import time
|
5 |
+
import gradio as gr
|
6 |
+
import tempfile
|
7 |
+
from typing import Dict, Any, List, Optional
|
8 |
+
from transformers import AutoTokenizer
|
9 |
+
from sentence_transformers import SentenceTransformer
|
10 |
+
from pydantic import BaseModel, Field
|
11 |
+
from anthropic import Anthropic
|
12 |
+
|
13 |
+
|
14 |
+
CLAUDE_MODEL = "claude-3-5-sonnet-20241022"
|
15 |
+
OPENAI_MODEL = "gpt-4o"
|
16 |
+
GEMINI_MODEL = "gemini-2.0-flash"
|
17 |
|
18 |
+
DEFAULT_TEMPERATURE = 0.7
|
19 |
|
20 |
+
TOKENIZER_MODEL = "answerdotai/ModernBERT-base"
|
21 |
+
SENTENCE_TRANSFORMER_MODEL = "all-MiniLM-L6-v2"
|
22 |
+
|
23 |
+
class CourseInfo(BaseModel):
|
24 |
+
course_name: str = Field(description="Name of the course")
|
25 |
+
section_name: str = Field(description="Name of the course section")
|
26 |
+
lesson_name: str = Field(description="Name of the lesson")
|
27 |
+
|
28 |
+
class QuizOption(BaseModel):
|
29 |
+
text: str = Field(description="The text of the answer option")
|
30 |
+
correct: bool = Field(description="Whether this option is correct")
|
31 |
+
|
32 |
+
class QuizQuestion(BaseModel):
|
33 |
+
question: str = Field(description="The text of the quiz question")
|
34 |
+
options: List[QuizOption] = Field(description="List of answer options")
|
35 |
+
|
36 |
+
class Segment(BaseModel):
|
37 |
+
segment_number: int = Field(description="The segment number")
|
38 |
+
topic_name: str = Field(description="Unique and specific topic name that clearly differentiates it from other segments")
|
39 |
+
key_concepts: List[str] = Field(description="3-5 key concepts discussed in the segment")
|
40 |
+
summary: str = Field(description="Brief summary of the segment (3-5 sentences)")
|
41 |
+
quiz_questions: List[QuizQuestion] = Field(description="5 quiz questions based on the segment content")
|
42 |
+
|
43 |
+
class TextSegmentAnalysis(BaseModel):
|
44 |
+
course_info: CourseInfo = Field(description="Information about the course")
|
45 |
+
segments: List[Segment] = Field(description="List of text segments with analysis")
|
46 |
+
|
47 |
+
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_MODEL)
|
49 |
+
sentence_model = SentenceTransformer(SENTENCE_TRANSFORMER_MODEL)
|
50 |
+
|
51 |
+
# System prompt
|
52 |
+
system_prompt = """You are an expert educational content analyzer. Your task is to analyze text content,
|
53 |
+
identify distinct segments, and create high-quality educational quiz questions for each segment."""
|
54 |
|
55 |
def clean_text(text):
|
56 |
text = re.sub(r'\[speaker_\d+\]', '', text)
|
|
|
83 |
|
84 |
return [" ".join(first_half), " ".join(second_half)]
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
def generate_with_claude(text, api_key, course_name="", section_name="", lesson_name=""):
|
89 |
+
from prompts import SYSTEM_PROMPT, ANALYSIS_PROMPT_TEMPLATE_CLAUDE
|
|
|
90 |
|
91 |
+
client = Anthropic(api_key=api_key)
|
92 |
|
93 |
+
segment_analysis_schema = TextSegmentAnalysis.model_json_schema()
|
|
|
94 |
|
95 |
+
tools = [
|
96 |
+
{
|
97 |
+
"name": "build_segment_analysis",
|
98 |
+
"description": "Build the text segment analysis with quiz questions",
|
99 |
+
"input_schema": segment_analysis_schema
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
}
|
101 |
+
]
|
|
|
|
|
102 |
|
103 |
+
system_prompt = """You are a helpful assistant specialized in text analysis and educational content creation.
|
104 |
+
You analyze texts to identify distinct segments, create summaries, and generate quiz questions."""
|
105 |
|
106 |
+
prompt = prompt = ANALYSIS_PROMPT_TEMPLATE_CLAUDE.format(
|
107 |
+
course_name=course_name,
|
108 |
+
section_name=section_name,
|
109 |
+
lesson_name=lesson_name,
|
110 |
+
text=text
|
111 |
+
)
|
112 |
+
|
113 |
+
try:
|
114 |
+
response = client.messages.create(
|
115 |
+
model=CLAUDE_MODEL,
|
116 |
+
max_tokens=8192,
|
117 |
+
temperature=DEFAULT_TEMPERATURE,
|
118 |
+
system=system_prompt,
|
119 |
+
messages=[
|
120 |
+
{
|
121 |
+
"role": "user",
|
122 |
+
"content": prompt
|
123 |
+
}
|
124 |
+
],
|
125 |
+
tools=tools,
|
126 |
+
tool_choice={"type": "tool", "name": "build_segment_analysis"}
|
127 |
+
)
|
128 |
|
129 |
+
# Extract the tool call content
|
130 |
+
if response.content and len(response.content) > 0 and hasattr(response.content[0], 'input'):
|
131 |
+
function_call = response.content[0].input
|
132 |
+
return function_call
|
133 |
+
else:
|
134 |
+
raise Exception("No valid tool call found in the response")
|
135 |
+
except Exception as e:
|
136 |
+
raise Exception(f"Error calling Anthropic API: {str(e)}")
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
+
def get_llm_by_api_key(api_key):
|
142 |
+
if api_key.startswith("sk-ant-"): # Claude API key format
|
143 |
+
from langchain_anthropic import ChatAnthropic
|
144 |
+
return ChatAnthropic(
|
145 |
+
anthropic_api_key=api_key,
|
146 |
+
model_name=CLAUDE_MODEL,
|
147 |
+
temperature=DEFAULT_TEMPERATURE,
|
148 |
+
max_retries=3
|
149 |
+
)
|
150 |
+
elif api_key.startswith("sk-"): # OpenAI API key format
|
151 |
+
from langchain_openai import ChatOpenAI
|
152 |
+
return ChatOpenAI(
|
153 |
+
openai_api_key=api_key,
|
154 |
+
model_name=OPENAI_MODEL,
|
155 |
+
temperature=DEFAULT_TEMPERATURE,
|
156 |
+
max_retries=3
|
157 |
+
)
|
158 |
+
else: # Default to Gemini
|
159 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
160 |
+
os.environ["GOOGLE_API_KEY"] = api_key
|
161 |
+
return ChatGoogleGenerativeAI(
|
162 |
+
model=GEMINI_MODEL,
|
163 |
+
temperature=DEFAULT_TEMPERATURE,
|
164 |
+
max_retries=3
|
165 |
+
)
|
166 |
+
|
167 |
+
def segment_and_analyze_text(text: str, api_key: str, course_name="", section_name="", lesson_name="") -> Dict[str, Any]:
|
168 |
+
from prompts import SYSTEM_PROMPT, ANALYSIS_PROMPT_TEMPLATE_GEMINI
|
169 |
+
if api_key.startswith("sk-ant-"):
|
170 |
+
return generate_with_claude(text, api_key, course_name, section_name, lesson_name)
|
171 |
|
172 |
+
# For other models, use LangChain
|
173 |
+
llm = get_llm_by_api_key(api_key)
|
174 |
|
175 |
+
prompt = ANALYSIS_PROMPT_TEMPLATE_GEMINI.format(
|
176 |
+
course_name=course_name,
|
177 |
+
section_name=section_name,
|
178 |
+
lesson_name=lesson_name,
|
179 |
+
text=text
|
180 |
+
)
|
181 |
+
|
182 |
+
try:
|
183 |
+
messages = [
|
184 |
+
{"role": "system", "content": system_prompt},
|
185 |
+
{"role": "user", "content": prompt}
|
186 |
+
]
|
187 |
|
188 |
+
response = llm.invoke(messages)
|
189 |
|
190 |
+
try:
|
191 |
+
content = response.content
|
192 |
+
json_match = re.search(r'```json\s*([\s\S]*?)\s*```', content)
|
193 |
|
194 |
+
if json_match:
|
195 |
+
json_str = json_match.group(1)
|
196 |
+
else:
|
197 |
+
json_match = re.search(r'(\{[\s\S]*\})', content)
|
198 |
+
if json_match:
|
199 |
+
json_str = json_match.group(1)
|
200 |
+
else:
|
201 |
+
json_str = content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
+
# Parse the JSON
|
204 |
+
function_call = json.loads(json_str)
|
205 |
+
return function_call
|
206 |
+
except json.JSONDecodeError:
|
207 |
+
raise Exception("Could not parse JSON from LLM response")
|
208 |
+
except Exception as e:
|
209 |
+
raise Exception(f"Error calling API: {str(e)}")
|
|
|
|
|
210 |
|
211 |
def format_quiz_for_display(results):
|
212 |
output = []
|
213 |
|
214 |
+
if "course_info" in results:
|
215 |
+
course_info = results["course_info"]
|
216 |
+
output.append(f"{'='*40}")
|
217 |
+
output.append(f"COURSE: {course_info.get('course_name', 'N/A')}")
|
218 |
+
output.append(f"SECTION: {course_info.get('section_name', 'N/A')}")
|
219 |
+
output.append(f"LESSON: {course_info.get('lesson_name', 'N/A')}")
|
220 |
+
output.append(f"{'='*40}\n")
|
221 |
+
|
222 |
+
segments = results.get("segments", [])
|
223 |
+
for i, segment in enumerate(segments):
|
224 |
topic = segment["topic_name"]
|
225 |
+
segment_num = i + 1
|
|
|
226 |
output.append(f"\n\n{'='*40}")
|
227 |
output.append(f"SEGMENT {segment_num}: {topic}")
|
228 |
output.append(f"{'='*40}\n")
|
|
|
229 |
output.append("KEY CONCEPTS:")
|
230 |
for concept in segment["key_concepts"]:
|
231 |
output.append(f"• {concept}")
|
|
|
232 |
output.append("\nSUMMARY:")
|
233 |
output.append(segment["summary"])
|
|
|
234 |
output.append("\nQUIZ QUESTIONS:")
|
235 |
for i, q in enumerate(segment["quiz_questions"]):
|
236 |
output.append(f"\n{i+1}. {q['question']}")
|
|
|
237 |
for j, option in enumerate(q['options']):
|
238 |
+
letter = chr(97 + j).upper()
|
239 |
correct_marker = " ✓" if option["correct"] else ""
|
240 |
output.append(f" {letter}. {option['text']}{correct_marker}")
|
|
|
241 |
return "\n".join(output)
|
242 |
|
243 |
+
def analyze_document(text, api_key, course_name, section_name, lesson_name):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
try:
|
245 |
+
start_time = time.time()
|
|
|
|
|
|
|
|
|
246 |
|
247 |
+
# Split text if it's too long
|
248 |
+
text_parts = split_text_by_tokens(text)
|
249 |
|
250 |
+
all_results = {
|
251 |
+
"course_info": {
|
252 |
+
"course_name": course_name,
|
253 |
+
"section_name": section_name,
|
254 |
+
"lesson_name": lesson_name
|
255 |
+
},
|
256 |
+
"segments": []
|
257 |
+
}
|
258 |
+
segment_counter = 1
|
259 |
|
260 |
+
# Process each part of the text
|
261 |
+
for part in text_parts:
|
262 |
+
analysis = segment_and_analyze_text(
|
263 |
+
part,
|
264 |
+
api_key,
|
265 |
+
course_name=course_name,
|
266 |
+
section_name=section_name,
|
267 |
+
lesson_name=lesson_name
|
268 |
+
)
|
269 |
+
|
270 |
+
if "segments" in analysis:
|
271 |
+
for segment in analysis["segments"]:
|
272 |
+
segment["segment_number"] = segment_counter
|
273 |
+
all_results["segments"].append(segment)
|
274 |
+
segment_counter += 1
|
275 |
|
276 |
+
end_time = time.time()
|
277 |
+
total_time = end_time - start_time
|
|
|
|
|
278 |
|
279 |
+
# Format the results for display
|
280 |
+
formatted_text = format_quiz_for_display(all_results)
|
281 |
+
formatted_text = f"Total processing time: {total_time:.2f} seconds\n\n" + formatted_text
|
282 |
|
283 |
+
# Create temporary files for JSON and text output
|
284 |
+
json_path = tempfile.mktemp(suffix='.json')
|
285 |
+
with open(json_path, 'w', encoding='utf-8') as json_file:
|
286 |
+
json.dump(all_results, json_file, indent=2)
|
287 |
|
288 |
+
txt_path = tempfile.mktemp(suffix='.txt')
|
289 |
+
with open(txt_path, 'w', encoding='utf-8') as txt_file:
|
290 |
+
txt_file.write(formatted_text)
|
291 |
+
|
292 |
+
return formatted_text, json_path, txt_path
|
293 |
except Exception as e:
|
294 |
+
error_message = f"Error processing document: {str(e)}"
|
295 |
+
return error_message, None, None
|
|
|
296 |
|
297 |
with gr.Blocks(title="Quiz Generator") as app:
|
298 |
gr.Markdown("# Quiz Generator")
|
299 |
+
|
300 |
+
with gr.Row():
|
301 |
+
with gr.Column():
|
302 |
+
course_name = gr.Textbox(
|
303 |
+
placeholder="Enter the course name",
|
304 |
+
label="Course Name"
|
305 |
+
)
|
306 |
+
section_name = gr.Textbox(
|
307 |
+
placeholder="Enter the section name",
|
308 |
+
label="Section Name"
|
309 |
+
)
|
310 |
+
lesson_name = gr.Textbox(
|
311 |
+
placeholder="Enter the lesson name",
|
312 |
+
label="Lesson Name"
|
313 |
+
)
|
314 |
+
|
315 |
with gr.Row():
|
316 |
with gr.Column():
|
317 |
input_text = gr.Textbox(
|
|
|
321 |
)
|
322 |
|
323 |
api_key = gr.Textbox(
|
324 |
+
label="API Key",
|
325 |
+
placeholder="Enter your OpenAI, Claude, or Gemini API key",
|
326 |
type="password"
|
327 |
)
|
328 |
|
|
|
338 |
|
339 |
analyze_btn.click(
|
340 |
fn=analyze_document,
|
341 |
+
inputs=[input_text, api_key, course_name, section_name, lesson_name],
|
342 |
outputs=[output_results, json_file_output, txt_file_output]
|
343 |
)
|
344 |
+
|
345 |
if __name__ == "__main__":
|
346 |
app.launch()
|