Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -164,12 +164,18 @@ def analyze_segment_with_gemini(cluster_text, is_full_text=False):
|
|
164 |
prompt = f"""
|
165 |
Analyze the following text (likely a transcript or document) and:
|
166 |
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
2. For each segment/topic you identify:
|
169 |
- Provide a SPECIFIC and UNIQUE topic name (3-5 words) that clearly differentiates it from other segments
|
170 |
- List 3-5 key concepts discussed in that segment
|
171 |
- Write a brief summary of that segment (3-5 sentences)
|
172 |
-
- Create 5 quiz questions based DIRECTLY on the content in that segment
|
173 |
|
174 |
For each quiz question:
|
175 |
- Create one correct answer that comes DIRECTLY from the text
|
@@ -182,6 +188,7 @@ def analyze_segment_with_gemini(cluster_text, is_full_text=False):
|
|
182 |
|
183 |
Format your response as JSON with the following structure:
|
184 |
{{
|
|
|
185 |
"segments": [
|
186 |
{{
|
187 |
"topic_name": "Name of segment 1",
|
@@ -211,14 +218,27 @@ def analyze_segment_with_gemini(cluster_text, is_full_text=False):
|
|
211 |
// More segments...
|
212 |
]
|
213 |
}}
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
"""
|
215 |
else:
|
216 |
prompt = f"""
|
217 |
-
Analyze the following text segment and
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
1. A SPECIFIC and DESCRIPTIVE topic name (3-5 words) that precisely captures the main focus
|
219 |
2. 3-5 key concepts discussed
|
220 |
3. A brief summary (6-7 sentences)
|
221 |
-
4. Create 5 quiz questions based DIRECTLY on the text content (not from your summary)
|
222 |
|
223 |
For each quiz question:
|
224 |
- Create one correct answer that comes DIRECTLY from the text
|
@@ -231,6 +251,7 @@ def analyze_segment_with_gemini(cluster_text, is_full_text=False):
|
|
231 |
|
232 |
Format your response as JSON with the following structure:
|
233 |
{{
|
|
|
234 |
"topic_name": "Name of the topic",
|
235 |
"key_concepts": ["concept1", "concept2", "concept3"],
|
236 |
"summary": "Brief summary of the text segment.",
|
@@ -255,50 +276,19 @@ def analyze_segment_with_gemini(cluster_text, is_full_text=False):
|
|
255 |
// More questions...
|
256 |
]
|
257 |
}}
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
"""
|
259 |
-
|
260 |
-
response = llm.invoke(prompt)
|
261 |
-
|
262 |
-
response_text = response.content
|
263 |
-
|
264 |
-
try:
|
265 |
-
json_match = re.search(r'\{[\s\S]*\}', response_text)
|
266 |
-
if json_match:
|
267 |
-
response_json = json.loads(json_match.group(0))
|
268 |
-
else:
|
269 |
-
response_json = json.loads(response_text)
|
270 |
-
|
271 |
-
return response_json
|
272 |
-
except json.JSONDecodeError as e:
|
273 |
-
print(f"Error parsing JSON response: {e}")
|
274 |
-
print(f"Raw response: {response_text}")
|
275 |
-
|
276 |
-
if is_full_text:
|
277 |
-
return {
|
278 |
-
"segments": [
|
279 |
-
{
|
280 |
-
"topic_name": "JSON Parsing Error",
|
281 |
-
"key_concepts": ["Error in response format"],
|
282 |
-
"summary": f"Could not parse the API response. Raw text: {response_text[:200]}...",
|
283 |
-
"quiz_questions": []
|
284 |
-
}
|
285 |
-
]
|
286 |
-
}
|
287 |
-
else:
|
288 |
-
return {
|
289 |
-
"topic_name": "JSON Parsing Error",
|
290 |
-
"key_concepts": ["Error in response format"],
|
291 |
-
"summary": f"Could not parse the API response. Raw text: {response_text[:200]}...",
|
292 |
-
"quiz_questions": []
|
293 |
-
}
|
294 |
-
|
295 |
-
|
296 |
|
297 |
def process_document_with_quiz(text):
|
298 |
token_count = len(tokenizer.encode(text))
|
299 |
print(f"Text contains {token_count} tokens")
|
300 |
|
301 |
-
if token_count <
|
302 |
print("Text is short enough to analyze directly without text segmentation")
|
303 |
full_analysis = analyze_segment_with_gemini(text, is_full_text=True)
|
304 |
|
|
|
164 |
prompt = f"""
|
165 |
Analyze the following text (likely a transcript or document) and:
|
166 |
|
167 |
+
FIRST ASSESS THE TEXT:
|
168 |
+
- Check if it's primarily self-introduction, biographical information, or conclusion
|
169 |
+
- Check if it's too short or lacks meaningful content (less than 100 words of substance)
|
170 |
+
- If either case is true, respond with a simple JSON: {{"status": "insufficient", "reason": "Brief explanation"}}
|
171 |
+
|
172 |
+
IF THE TEXT HAS SUFFICIENT MEANINGFUL CONTENT:
|
173 |
+
1. Identify DISTINCT key topics within the text
|
174 |
2. For each segment/topic you identify:
|
175 |
- Provide a SPECIFIC and UNIQUE topic name (3-5 words) that clearly differentiates it from other segments
|
176 |
- List 3-5 key concepts discussed in that segment
|
177 |
- Write a brief summary of that segment (3-5 sentences)
|
178 |
+
- Create 5 quiz questions based DIRECTLY on the content in that segment, ONLY if the segment contains factual information
|
179 |
|
180 |
For each quiz question:
|
181 |
- Create one correct answer that comes DIRECTLY from the text
|
|
|
188 |
|
189 |
Format your response as JSON with the following structure:
|
190 |
{{
|
191 |
+
"status": "processed",
|
192 |
"segments": [
|
193 |
{{
|
194 |
"topic_name": "Name of segment 1",
|
|
|
218 |
// More segments...
|
219 |
]
|
220 |
}}
|
221 |
+
|
222 |
+
OR if the text is just introductory, concluding, or insufficient:
|
223 |
+
{{
|
224 |
+
"status": "insufficient",
|
225 |
+
"reason": "Brief explanation of why (e.g., 'Text is primarily self-introduction', 'Text is too short', etc.)"
|
226 |
+
}}
|
227 |
"""
|
228 |
else:
|
229 |
prompt = f"""
|
230 |
+
Analyze the following text segment and:
|
231 |
+
|
232 |
+
FIRST ASSESS THE TEXT:
|
233 |
+
- Check if it's primarily self-introduction, biographical information, or conclusion
|
234 |
+
- Check if it's too short or lacks meaningful content (less than 100 words of substance)
|
235 |
+
- If either case is true, respond with a simple JSON: {{"status": "insufficient", "reason": "Brief explanation"}}
|
236 |
+
|
237 |
+
IF THE TEXT HAS SUFFICIENT MEANINGFUL CONTENT:
|
238 |
1. A SPECIFIC and DESCRIPTIVE topic name (3-5 words) that precisely captures the main focus
|
239 |
2. 3-5 key concepts discussed
|
240 |
3. A brief summary (6-7 sentences)
|
241 |
+
4. Create 5 quiz questions based DIRECTLY on the text content (not from your summary), ONLY if the segment contains factual information
|
242 |
|
243 |
For each quiz question:
|
244 |
- Create one correct answer that comes DIRECTLY from the text
|
|
|
251 |
|
252 |
Format your response as JSON with the following structure:
|
253 |
{{
|
254 |
+
"status": "processed",
|
255 |
"topic_name": "Name of the topic",
|
256 |
"key_concepts": ["concept1", "concept2", "concept3"],
|
257 |
"summary": "Brief summary of the text segment.",
|
|
|
276 |
// More questions...
|
277 |
]
|
278 |
}}
|
279 |
+
|
280 |
+
OR if the text is just introductory, concluding, or insufficient:
|
281 |
+
{{
|
282 |
+
"status": "insufficient",
|
283 |
+
"reason": "Brief explanation of why (e.g., 'Text is primarily self-introduction', 'Text is too short', etc.)"
|
284 |
+
}}
|
285 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
|
287 |
def process_document_with_quiz(text):
|
288 |
token_count = len(tokenizer.encode(text))
|
289 |
print(f"Text contains {token_count} tokens")
|
290 |
|
291 |
+
if token_count < 8000:
|
292 |
print("Text is short enough to analyze directly without text segmentation")
|
293 |
full_analysis = analyze_segment_with_gemini(text, is_full_text=True)
|
294 |
|