File size: 9,752 Bytes
d0a5587 23e86a0 e6c085b f03f1f5 80dc988 812bf7e f03f1f5 3f70b80 f03f1f5 80dc988 f03f1f5 80dc988 f03f1f5 80dc988 f03f1f5 80dc988 f03f1f5 80dc988 f03f1f5 80dc988 f03f1f5 80dc988 f03f1f5 80dc988 f03f1f5 80dc988 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import huggingface_hub
import gradio as gr
import os
from model import models
from multit2i import (load_models, infer_fn, infer_rand_fn, save_gallery,
change_model, warm_model, get_model_info_md, loaded_models,
get_positive_prefix, get_positive_suffix, get_negative_prefix, get_negative_suffix,
get_recom_prompt_type, set_recom_prompt_preset, get_tag_type, randomize_seed, translate_to_en)
from huggingface_hub import InferenceClient
max_images = 8
MAX_SEED = 2**32-1
load_models(models)
client = InferenceClient(
provider="hf-inference",
api_key="hf_xxxxxxxxxxxxxxxxxxxxxxxx"
)
css = """
.model_info { text-align: center; }
.output { width=112px; height=112px; max_width=112px; max_height=112px; !important; }
.gallery { min_width=512px; min_height=512px; max_height=1024px; !important; }
"""
with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css) as demo:
with gr.Tab("Image Generator"):
with gr.Row():
with gr.Column(scale=10):
with gr.Group():
prompt = gr.Text(label="Prompt", lines=2, max_lines=8, placeholder="1girl, solo, ...", show_copy_button=True)
with gr.Accordion("Advanced options", open=False):
neg_prompt = gr.Text(label="Negative Prompt", lines=1, max_lines=8, placeholder="")
with gr.Row():
width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
with gr.Row():
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
recom_prompt_preset = gr.Radio(label="Set Presets", choices=get_recom_prompt_type(), value="Common")
with gr.Row():
positive_prefix = gr.CheckboxGroup(label="Use Positive Prefix", choices=get_positive_prefix(), value=[])
positive_suffix = gr.CheckboxGroup(label="Use Positive Suffix", choices=get_positive_suffix(), value=["Common"])
negative_prefix = gr.CheckboxGroup(label="Use Negative Prefix", choices=get_negative_prefix(), value=[])
negative_suffix = gr.CheckboxGroup(label="Use Negative Suffix", choices=get_negative_suffix(), value=["Common"])
with gr.Row():
image_num = gr.Slider(label="Number of images", minimum=1, maximum=max_images, value=1, step=1, interactive=True, scale=2)
trans_prompt = gr.Button(value="Translate 📝", variant="secondary", size="sm", scale=2)
clear_prompt = gr.Button(value="Clear 🗑️", variant="secondary", size="sm", scale=1)
with gr.Row():
run_button = gr.Button("Generate Image", variant="primary", scale=8)
random_button = gr.Button("Random Model 🎲", variant="secondary", scale=3)
stop_button = gr.Button('Stop', interactive=False, variant="stop", scale=1)
with gr.Group():
model_name = gr.Dropdown(label="Select Model", choices=list(loaded_models.keys()), value=list(loaded_models.keys())[0], allow_custom_value=True)
model_info = gr.Markdown(value=get_model_info_md(list(loaded_models.keys())[0]), elem_classes="model_info")
with gr.Column(scale=10):
with gr.Group():
with gr.Row():
output = [gr.Image(label='', elem_classes="output", type="filepath", format="png",
show_download_button=True, show_share_button=False, show_label=False,
interactive=False, min_width=80, visible=True, width=112, height=112) for _ in range(max_images)]
with gr.Group():
results = gr.Gallery(label="Gallery", elem_classes="gallery", interactive=False, show_download_button=True, show_share_button=False,
container=True, format="png", object_fit="cover", columns=2, rows=2)
image_files = gr.Files(label="Download", interactive=False)
clear_results = gr.Button("Clear Gallery / Download 🗑️", variant="secondary")
with gr.Column():
examples = gr.Examples(
examples = [
["souryuu asuka langley, 1girl, neon genesis evangelion, plugsuit, pilot suit, red bodysuit, sitting, crossing legs, black eye patch, cat hat, throne, symmetrical, looking down, from bottom, looking at viewer, outdoors"],
["sailor moon, magical girl transformation, sparkles and ribbons, soft pastel colors, crescent moon motif, starry night sky background, shoujo manga style"],
["kafuu chino, 1girl, solo"],
["1girl"],
["beautiful sunset"],
],
inputs=[prompt],
cache_examples=False,
)
with gr.Tab("PNG Info"):
def extract_exif_data(image):
if image is None: return ""
try:
metadata_keys = ['parameters', 'metadata', 'prompt', 'Comment']
for key in metadata_keys:
if key in image.info:
return image.info[key]
return str(image.info)
except Exception as e:
return f"Error extracting metadata: {str(e)}"
with gr.Row():
with gr.Column():
image_metadata = gr.Image(label="Image with metadata", type="pil", sources=["upload"])
with gr.Column():
result_metadata = gr.Textbox(label="Metadata", show_label=True, show_copy_button=True, interactive=False, container=True, max_lines=99)
image_metadata.change(
fn=extract_exif_data,
inputs=[image_metadata],
outputs=[result_metadata],
)
gr.Markdown(
f"""This demo was created in reference to the following demos.<br>
[Nymbo/Flood](https://huggingface.co/spaces/Nymbo/Flood),
[Yntec/ToyWorldXL](https://huggingface.co/spaces/Yntec/ToyWorldXL),
[Yntec/Diffusion80XX](https://huggingface.co/spaces/Yntec/Diffusion80XX).
"""
)
gr.DuplicateButton(value="Duplicate Space")
gr.Markdown(f"Just a few edits to *model.py* are all it takes to complete your own collection.")
gr.on(triggers=[run_button.click, prompt.submit, random_button.click], fn=lambda: gr.update(interactive=True), inputs=None, outputs=stop_button, show_api=False)
model_name.change(change_model, [model_name], [model_info], queue=True, show_api=True)\
.success(warm_model, [model_name], None, queue=True, show_api=True)
for i, o in enumerate(output):
img_i = gr.Number(i, visible=False)
image_num.change(lambda i, n: gr.update(visible = (i < n)), [img_i, image_num], o, show_api=True)
gen_event = gr.on(triggers=[run_button.click, prompt.submit],
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4: infer_fn(m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4) if (i < n) else None,
inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg, seed,
positive_prefix, positive_suffix, negative_prefix, negative_suffix],
outputs=[o], queue=True, show_api=False) # Be sure to delete ", queue=False" when activating the stop button
gen_event2 = gr.on(triggers=[random_button.click],
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4: infer_rand_fn(m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4) if (i < n) else None,
inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg, seed,
positive_prefix, positive_suffix, negative_prefix, negative_suffix],
outputs=[o], queue=True, show_api=False) # Be sure to delete ", queue=False" when activating the stop button
o.change(save_gallery, [o, results], [results, image_files], show_api=False)
stop_button.click(lambda: gr.update(interactive=False), None, stop_button, cancels=[gen_event, gen_event2], show_api=False)
clear_prompt.click(lambda: (None, None), None, [prompt, neg_prompt], queue=True, show_api=True)
clear_results.click(lambda: (None, None), None, [results, image_files], queue=True, show_api=True)
recom_prompt_preset.change(set_recom_prompt_preset, [recom_prompt_preset],
[positive_prefix, positive_suffix, negative_prefix, negative_suffix], queue=True, show_api=True)
seed_rand.click(randomize_seed, None, [seed], queue=True, show_api=True)
trans_prompt.click(translate_to_en, [prompt], [prompt], queue=True, show_api=True)\
.then(translate_to_en, [neg_prompt], [neg_prompt], queue=True, show_api=True)
demo.queue(default_concurrency_limit=240, max_size=240)
demo.launch(max_threads=400, ssr_mode=True)
# https://github.com/gradio-app/gradio/issues/6339
demo.queue(concurrency_count=50)
demo.launch() |