Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,7 @@ CLASSES = {
|
|
7 |
'irrelevant': 1,
|
8 |
'no': 2,
|
9 |
}
|
10 |
-
tokenizer = DebertaV2Tokenizer.from_pretrained('cross-encoder/nli-deberta-v3-base',do_lower_case=True)
|
11 |
model = AutoModelForSequenceClassification.from_pretrained('MrPio/TheSeagullStory-nli-deberta-v3-base')
|
12 |
model.eval()
|
13 |
story = open('story.txt').read().replace("\n\n", "\n").replace("\n", " ").strip()
|
@@ -15,11 +15,11 @@ story = open('story.txt').read().replace("\n\n", "\n").replace("\n", " ").strip(
|
|
15 |
|
16 |
def ask(question):
|
17 |
inputs = tokenizer(story, question, truncation=True, padding=True)
|
18 |
-
prediction = torch.
|
19 |
-
return {c: prediction[i].item() for c, i in CLASSES}
|
20 |
|
21 |
|
22 |
-
|
23 |
ask,
|
24 |
inputs=[gr.Textbox(value="", label="Your question, as an affirmative sentence:")],
|
25 |
outputs=[gr.Label(label="Answer", num_top_classes=3)],
|
@@ -35,4 +35,4 @@ demo = gr.Interface(
|
|
35 |
)
|
36 |
|
37 |
if __name__ == "__main__":
|
38 |
-
|
|
|
7 |
'irrelevant': 1,
|
8 |
'no': 2,
|
9 |
}
|
10 |
+
tokenizer = DebertaV2Tokenizer.from_pretrained('cross-encoder/nli-deberta-v3-base', do_lower_case=True)
|
11 |
model = AutoModelForSequenceClassification.from_pretrained('MrPio/TheSeagullStory-nli-deberta-v3-base')
|
12 |
model.eval()
|
13 |
story = open('story.txt').read().replace("\n\n", "\n").replace("\n", " ").strip()
|
|
|
15 |
|
16 |
def ask(question):
|
17 |
inputs = tokenizer(story, question, truncation=True, padding=True)
|
18 |
+
prediction = torch.softmax(model(**inputs).logits, 1).squeeze()
|
19 |
+
return {c: round(prediction[i].item(), 3) for c, i in CLASSES}
|
20 |
|
21 |
|
22 |
+
gradio = gr.Interface(
|
23 |
ask,
|
24 |
inputs=[gr.Textbox(value="", label="Your question, as an affirmative sentence:")],
|
25 |
outputs=[gr.Label(label="Answer", num_top_classes=3)],
|
|
|
35 |
)
|
36 |
|
37 |
if __name__ == "__main__":
|
38 |
+
gradio.launch(share=True)
|