Spaces:
Running
Running
from typing import Any, Sequence | |
import gradio as gr | |
import tensorflow as tf | |
import torch | |
from gradio import CSVLogger, FlaggingCallback | |
from gradio.components import Component | |
from transformers import DebertaV2Tokenizer, TFAutoModelForSequenceClassification, AutoModelForSequenceClassification | |
USE_TENSORFLOW = True | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
CLASSES = { | |
'yes': 0, | |
'irrelevant': 1, | |
'no': 2, | |
} | |
tokenizer = DebertaV2Tokenizer.from_pretrained('cross-encoder/nli-deberta-v3-base', do_lower_case=True) | |
model = TFAutoModelForSequenceClassification.from_pretrained('MrPio/TheSeagullStory-nli-deberta-v3-base', | |
dtype=tf.float16) if USE_TENSORFLOW else AutoModelForSequenceClassification.from_pretrained( | |
'MrPio/TheSeagullStory-nli-deberta-v3-base') | |
if not USE_TENSORFLOW: | |
model.eval() | |
if torch.cuda.is_available(): | |
model.half() | |
story = open('story.txt').read().replace("\n\n", "\n").replace("\n", " ").strip() | |
def ask(question): | |
input = tokenizer(story, question, truncation=True, padding=True, return_tensors='tf' if USE_TENSORFLOW else 'pt') | |
if not USE_TENSORFLOW: | |
input = {key: value.to(device) for key, value in input.items()} | |
output = model(**input) | |
prediction = torch.softmax(output.logits, 1).squeeze() | |
return {c: round(prediction[i].item(), 3) for c, i in CLASSES.items()} | |
else: | |
output = model(input, training=False) | |
prediction = tf.nn.softmax(output.logits, axis=-1).numpy().squeeze() | |
return {c: round(prediction[i], 3) for c, i in CLASSES.items()} | |
class Flagger(FlaggingCallback): | |
def __init__(self): | |
self.base_logger = CSVLogger() | |
def setup(self, components: Sequence[Component], flagging_dir: str): | |
self.base_logger.setup(components=components, flagging_dir=flagging_dir) | |
def flag(self, flag_data: list[Any], flag_option: str | None = None, username: str | None = None) -> int: | |
return self.base_logger.flag(flag_data=flag_data, flag_option=flag_option, username=username) | |
gradio = gr.Interface( | |
ask, | |
inputs=[gr.Textbox(value="", label="Your question, as an affirmative sentence:")], | |
outputs=[gr.Label(label="Answer", num_top_classes=3)], | |
title="The Seagull Story", | |
flagging_mode='manual', | |
flagging_callback=Flagger(), | |
flagging_options=['Yes', 'No', 'Irrelevant'], | |
description="β Albert and Dave find themselves on the pier. They go to a nearby restaurant where Albert orders " | |
"seagull meat. The waiter promptly serves Albert the meal. After taking a bite, he realizes " | |
"something. Albert pulls a gun out of his ruined jacket and shoots himself. β\n\nWhy did Albert shoot " | |
"himself?\n\nCan you unravel the truth behind this epilogue by asking only yes/no questions?\n\nPlease be specific about the time period you have in mind with your question.", | |
article='Please refrain from embarrassing DeBERTa with dumb questions.\n\nCheck the repository for more detail: https://github.com/MrPio/The-Seagull-Story', | |
examples=['Albert shoot himself for a reason', | |
'Dave has a watch on his wrist', | |
'Albert and Dave came to the pier on their own'] | |
) | |
if __name__ == "__main__": | |
gradio.launch(share=True) | |