TheSeagullStory / app.py
MrPio's picture
Update app.py
9c9f43c verified
raw
history blame
2.59 kB
import gradio as gr
import torch
import tensorflow as tf
from transformers import AutoModelForSequenceClassification, DebertaV2Tokenizer,TFAutoModelForSequenceClassification
USE_TENSORFLOW=True
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
CLASSES = {
'yes': 0,
'irrelevant': 1,
'no': 2,
}
tokenizer = DebertaV2Tokenizer.from_pretrained('cross-encoder/nli-deberta-v3-base', do_lower_case=True)
model = TFAutoModelForSequenceClassification.from_pretrained('MrPio/TheSeagullStory-nli-deberta-v3-base',dtype=tf.float16) if USE_TENSORFLOW else AutoModelForSequenceClassification.from_pretrained('MrPio/TheSeagullStory-nli-deberta-v3-base')
if not USE_TENSORFLOW:
model.eval()
if torch.cuda.is_available():
model.half()
story = open('story.txt').read().replace("\n\n", "\n").replace("\n", " ").strip()
def ask(question):
input = tokenizer(story, question, truncation=True, padding=True,return_tensors='tf' if USE_TENSORFLOW else 'pt')
if not USE_TENSORFLOW:
input = {key: value.to(device) for key, value in input.items()}
output=model(**input)
prediction = torch.softmax(output.logits, 1).squeeze()
return {c: round(prediction[i].item(), 3) for c, i in CLASSES.items()}
else:
output=model(input, training=False)
prediction = tf.nn.softmax(output.logits, axis=-1).numpy().squeeze()
return {c: round(prediction[i], 3) for c, i in CLASSES.items()}
gradio = gr.Interface(
ask,
inputs=[gr.Textbox(value="", label="Your question, as an affirmative sentence:")],
outputs=[gr.Label(label="Answer", num_top_classes=3)],
title="The Seagull Story",
description="β€œ Albert and Dave find themselves on the pier. They go to a nearby restaurant where Albert orders "
"seagull meat. The waiter promptly serves Albert the meal. After taking a bite, he realizes "
"something. Albert pulls a gun out of his ruined jacket and shoots himself. ”\n\nWhy did Albert shoot "
"himself?\n\nCan you unravel the truth behind this epilogue by asking only yes/no questions?\n\nPlease be specific about the time period you have in mind with your question.",
article='Please refrain from embarrassing DeBERTa with dumb questions.\n\nCheck the repository for more detail: https://github.com/MrPio/The-Seagull-Story',
examples=['Albert shoot himself for a reason',
'Dave has a watch on his wrist',
'Albert and Dave came to the pier on their own']
)
if __name__ == "__main__":
gradio.launch(share=True)