File size: 6,783 Bytes
fb30cb6
 
 
 
 
 
 
 
 
b33d088
5c12313
7e08481
 
fb30cb6
4b2e1d6
fb30cb6
 
 
b95210f
 
 
fb30cb6
 
b95210f
 
 
 
 
 
 
 
 
70a9dce
 
 
03b33e1
fb30cb6
4b2e1d6
 
7e08481
 
fb30cb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40b8949
 
 
 
 
 
 
fb30cb6
4b2e1d6
54225d7
9585f3d
63da240
 
7cda445
54225d7
0531416
 
 
 
 
 
 
 
 
 
 
 
 
4b2e1d6
 
 
 
40b8949
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b2e1d6
 
7e08481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import json
import torch
import requests
import time
import random
from PIL import Image
from typing import Union
import os
import base64
from together import Together
import pathlib

device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device}" if device != "cpu" else "Using CPU")

def _load_model():
    tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2", trust_remote_code=True, revision="2024-05-08", torch_dtype=(torch.bfloat16 if device == 'cuda' else torch.float32))
    model = AutoModelForCausalLM.from_pretrained("vikhyatk/moondream2", device_map=device, trust_remote_code=True, revision="2024-05-08")
    return (model, tokenizer)

class MoonDream():
    def __init__(self, model=None, tokenizer=None):
        self.model, self.tokenizer = (model, tokenizer)
        if not model or model is None or not tokenizer or tokenizer is None:
            self.model, self.tokenizer = _load_model()
        self.device = device
        self.model.to(self.device)
    def __call__(self, question, imgs):
        imn = 0
        for img in imgs:
            img = self.model.encode_image(img)
            res = self.model.answer_question(question=question, image_embeds=img, tokenizer=self.tokenizer)
            yield res
        return

md = MoonDream()

SYSTEM_PROMPT = "You are Llama 3 70b. You have been given access to Moondream 2 for VQA when given images. When you have a question about an image, simple start your response with the text, '@question\\nMy question?'. When you do this, the request will be sent to Moondream 2. User can see this happening if they turn debug on, so be professional and stay on topic. Any chat from anyone starting with @answer is the answer to last question asked. If something appears out of sync, ask User to clear the chat."

def _respond_one(question, img):
  txt = ""
  yield (txt := txt + MoonDream()(question, [img]))
  return txt

def respond_batch(question, **imgs):
  md = MoonDream()
  for img in imgs.values():
    res = md(question, img)
    for r in res:
      yield r
    yield "\n\n\n\n\n\n"
  return

def dual_images(img1: Image):
  # Ran once for each img to it's respective output. Output should be detailed str of description/feature extraction/interrogation.
  md = MoonDream()
  res = md("Describe the image in plain english ", [img1])
  txt = ""
  for r in res:
    yield (txt := txt + r)
  return

import os

def merge_descriptions_to_prompt(mi, d1, d2):
  from together import Together
  tog = Together(api_key=os.getenv("TOGETHER_KEY"))
  res = tog.completions.create(prompt=f"""Describe what would result if the following two descriptions were describing one thing.
### Description 1:
```text
{d1}
```
### Description 2:
```text
{d2}
```
Merge-Specific Instructions:
```text
{mi}
```
Ensure you end your output with ```\\n
---
Complete Description:
```text""", model="meta-llama/Meta-Llama-3-70B", stop=["```"], max_tokens=1024)
  return res.choices[0].text.split("```")[0]

def xform_image_description(img, inst):
  #md = MoonDream()
  from together import Together
  desc = dual_images(img)
  tog = Together(api_key=os.getenv("TOGETHER_KEY"))
  prompt=f"""Describe the image in aggressively verbose detail. I must know every freckle upon a man's brow and each blade of the grass intimately.\nDescription: ```text\n{desc}\n```\nInstructions:\n```text\n{inst}\n```\n\n\n---\nDetailed Description:\n```text"""
  res = tog.completions.create(prompt=prompt, model="meta-llama/Meta-Llama-3-70B", stop=["```"], max_tokens=1024)
  return res.choices[0].text[len(prompt):].split("```")[0]

def simple_desc(img, prompt):
  import base64
  gen = md(prompt, [img])
  total = ""
  for resp in gen:
    print(total := total + resp)
  img.resize((192,192)).save("tmp.png")
  bts = False
  with open("tmp.png", "rb") as f:
    bts = f.read()
  if bts:
    os.remove("tmp.png")
  res = {
    'image_b64': base64.b64encode(bts).decode('utf-8'),
    'description': total,
  }
  return total, res

ifc_imgprompt2text = gr.Interface(simple_desc, inputs=[gr.Image(label="input", type="pil"), gr.Textbox(label="prompt")], outputs=[gr.Textbox(label="description"), gr.JSON(label="json")])


"""
with gr.Blocks() as demo:
  
  with gr.Row():
    with gr.Column():
      im1 = gr.Image(label="image 1", type='pil')
      otp2 = gr.Textbox(label="image 1", interactive=True)
    with gr.Column():
      im2 = gr.Image(label="image 2", type='pil')
      otp3 = gr.Textbox(label="image 2")
  with gr.Row():
    minst = gr.Textbox(label="Merge Instructions")
  with gr.Row():
    btn2 = gr.Button("submit batch")
  with gr.Row():
    with gr.Column():
      im1 = gr.Image(label="image 1", type='pil')
      otp2 = gr.Textbox(label="individual batch output (left)", interactive=True)
    with gr.Column():
      im2 = gr.Image(label="image 2", type='pil')
      otp3 = gr.Textbox(label="individual batch output (right)", interactive=True)
  with gr.Row():
    otp4 = gr.Textbox(label="batch output ( combined )", interactive=True, lines=4)
  with gr.Row():
    btn_scd = gr.Button("Merge Descriptions to Single Combined Description")
  btn2.click(dual_images, inputs=[im1], outputs=[otp2])
  btn2.click(dual_images, inputs=[im2], outputs=[otp3])
  btn.click(dual_images, inputs=[img], outputs=[otpt])
  btn_scd.click(merge_descriptions_to_prompt, inputs=[minst, otp2, otp3], outputs=[otp4])

  demo.launch(debug=True, share=True)
  """

def chat(inpt, mess):
  from together import Together
  print(inpt, mess)
  if mess is None:
    mess = []

  tog = Together(api_key=os.getenv("TOGETHER_KEY"))
  messages = [
    {
      'role': 'system',
      'content': SYSTEM_PROMPT
    },
    {
      'role': 'user',
      'content': inpt
    }
  ]
  for cht in mess:
    print(cht)
  res = tog.chat.completions.create(
  messages=messages,
  model="meta-llama/Llama-3-70b-chat-hf", stop=["<|eot_id|>"], stream=True)
  txt = ""
  for pk in res:
    print(pk)
    txt += pk.choices[0].delta.content
    #mess[-1][-2] += pk.choices[0].delta.content
    yield txt #, json.dumps(messages)#mess#, json.dumps(messages)

chatbot = gr.Chatbot(
  [],
  elem_id="chatbot",
  bubble_full_width=False,
  sanitize_html=False,
  show_copy_button=True,
  avatar_images=[
    pathlib.Path("image.jpeg"), 
    pathlib.Path("image2.jpeg")
])

jsn = None
chat_input = None
with gr.TabbedInterface([ifc_imgprompt2text, gr.ChatInterface(chat, chatbot=chatbot, submit_btn=gr.Button(scale=1)), gr.Interface(lambda _: "", inputs=[jsn := gr.JSON(label="conversation")], outputs=[jsn])], ["Prompt & Image 2 Text", "Chat w/ Llama 3 70b & Moondream 2", "data_ignoreme"]) as ifc:
  jsn = gr.JSON(label="conversation", visible=True)
  ifc.launch(share=False, debug=True)