File size: 6,783 Bytes
fb30cb6 b33d088 5c12313 7e08481 fb30cb6 4b2e1d6 fb30cb6 b95210f fb30cb6 b95210f 70a9dce 03b33e1 fb30cb6 4b2e1d6 7e08481 fb30cb6 40b8949 fb30cb6 4b2e1d6 54225d7 9585f3d 63da240 7cda445 54225d7 0531416 4b2e1d6 40b8949 4b2e1d6 7e08481 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import json
import torch
import requests
import time
import random
from PIL import Image
from typing import Union
import os
import base64
from together import Together
import pathlib
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device}" if device != "cpu" else "Using CPU")
def _load_model():
tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2", trust_remote_code=True, revision="2024-05-08", torch_dtype=(torch.bfloat16 if device == 'cuda' else torch.float32))
model = AutoModelForCausalLM.from_pretrained("vikhyatk/moondream2", device_map=device, trust_remote_code=True, revision="2024-05-08")
return (model, tokenizer)
class MoonDream():
def __init__(self, model=None, tokenizer=None):
self.model, self.tokenizer = (model, tokenizer)
if not model or model is None or not tokenizer or tokenizer is None:
self.model, self.tokenizer = _load_model()
self.device = device
self.model.to(self.device)
def __call__(self, question, imgs):
imn = 0
for img in imgs:
img = self.model.encode_image(img)
res = self.model.answer_question(question=question, image_embeds=img, tokenizer=self.tokenizer)
yield res
return
md = MoonDream()
SYSTEM_PROMPT = "You are Llama 3 70b. You have been given access to Moondream 2 for VQA when given images. When you have a question about an image, simple start your response with the text, '@question\\nMy question?'. When you do this, the request will be sent to Moondream 2. User can see this happening if they turn debug on, so be professional and stay on topic. Any chat from anyone starting with @answer is the answer to last question asked. If something appears out of sync, ask User to clear the chat."
def _respond_one(question, img):
txt = ""
yield (txt := txt + MoonDream()(question, [img]))
return txt
def respond_batch(question, **imgs):
md = MoonDream()
for img in imgs.values():
res = md(question, img)
for r in res:
yield r
yield "\n\n\n\n\n\n"
return
def dual_images(img1: Image):
# Ran once for each img to it's respective output. Output should be detailed str of description/feature extraction/interrogation.
md = MoonDream()
res = md("Describe the image in plain english ", [img1])
txt = ""
for r in res:
yield (txt := txt + r)
return
import os
def merge_descriptions_to_prompt(mi, d1, d2):
from together import Together
tog = Together(api_key=os.getenv("TOGETHER_KEY"))
res = tog.completions.create(prompt=f"""Describe what would result if the following two descriptions were describing one thing.
### Description 1:
```text
{d1}
```
### Description 2:
```text
{d2}
```
Merge-Specific Instructions:
```text
{mi}
```
Ensure you end your output with ```\\n
---
Complete Description:
```text""", model="meta-llama/Meta-Llama-3-70B", stop=["```"], max_tokens=1024)
return res.choices[0].text.split("```")[0]
def xform_image_description(img, inst):
#md = MoonDream()
from together import Together
desc = dual_images(img)
tog = Together(api_key=os.getenv("TOGETHER_KEY"))
prompt=f"""Describe the image in aggressively verbose detail. I must know every freckle upon a man's brow and each blade of the grass intimately.\nDescription: ```text\n{desc}\n```\nInstructions:\n```text\n{inst}\n```\n\n\n---\nDetailed Description:\n```text"""
res = tog.completions.create(prompt=prompt, model="meta-llama/Meta-Llama-3-70B", stop=["```"], max_tokens=1024)
return res.choices[0].text[len(prompt):].split("```")[0]
def simple_desc(img, prompt):
import base64
gen = md(prompt, [img])
total = ""
for resp in gen:
print(total := total + resp)
img.resize((192,192)).save("tmp.png")
bts = False
with open("tmp.png", "rb") as f:
bts = f.read()
if bts:
os.remove("tmp.png")
res = {
'image_b64': base64.b64encode(bts).decode('utf-8'),
'description': total,
}
return total, res
ifc_imgprompt2text = gr.Interface(simple_desc, inputs=[gr.Image(label="input", type="pil"), gr.Textbox(label="prompt")], outputs=[gr.Textbox(label="description"), gr.JSON(label="json")])
"""
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
im1 = gr.Image(label="image 1", type='pil')
otp2 = gr.Textbox(label="image 1", interactive=True)
with gr.Column():
im2 = gr.Image(label="image 2", type='pil')
otp3 = gr.Textbox(label="image 2")
with gr.Row():
minst = gr.Textbox(label="Merge Instructions")
with gr.Row():
btn2 = gr.Button("submit batch")
with gr.Row():
with gr.Column():
im1 = gr.Image(label="image 1", type='pil')
otp2 = gr.Textbox(label="individual batch output (left)", interactive=True)
with gr.Column():
im2 = gr.Image(label="image 2", type='pil')
otp3 = gr.Textbox(label="individual batch output (right)", interactive=True)
with gr.Row():
otp4 = gr.Textbox(label="batch output ( combined )", interactive=True, lines=4)
with gr.Row():
btn_scd = gr.Button("Merge Descriptions to Single Combined Description")
btn2.click(dual_images, inputs=[im1], outputs=[otp2])
btn2.click(dual_images, inputs=[im2], outputs=[otp3])
btn.click(dual_images, inputs=[img], outputs=[otpt])
btn_scd.click(merge_descriptions_to_prompt, inputs=[minst, otp2, otp3], outputs=[otp4])
demo.launch(debug=True, share=True)
"""
def chat(inpt, mess):
from together import Together
print(inpt, mess)
if mess is None:
mess = []
tog = Together(api_key=os.getenv("TOGETHER_KEY"))
messages = [
{
'role': 'system',
'content': SYSTEM_PROMPT
},
{
'role': 'user',
'content': inpt
}
]
for cht in mess:
print(cht)
res = tog.chat.completions.create(
messages=messages,
model="meta-llama/Llama-3-70b-chat-hf", stop=["<|eot_id|>"], stream=True)
txt = ""
for pk in res:
print(pk)
txt += pk.choices[0].delta.content
#mess[-1][-2] += pk.choices[0].delta.content
yield txt #, json.dumps(messages)#mess#, json.dumps(messages)
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
bubble_full_width=False,
sanitize_html=False,
show_copy_button=True,
avatar_images=[
pathlib.Path("image.jpeg"),
pathlib.Path("image2.jpeg")
])
jsn = None
chat_input = None
with gr.TabbedInterface([ifc_imgprompt2text, gr.ChatInterface(chat, chatbot=chatbot, submit_btn=gr.Button(scale=1)), gr.Interface(lambda _: "", inputs=[jsn := gr.JSON(label="conversation")], outputs=[jsn])], ["Prompt & Image 2 Text", "Chat w/ Llama 3 70b & Moondream 2", "data_ignoreme"]) as ifc:
jsn = gr.JSON(label="conversation", visible=True)
ifc.launch(share=False, debug=True) |