Mr-Vicky-01 commited on
Commit
3d06d8b
·
verified ·
1 Parent(s): d3c35c4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -29
app.py CHANGED
@@ -1,4 +1,5 @@
1
  import streamlit as st
 
2
  from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate
3
  from llama_index.llms.huggingface import HuggingFaceInferenceAPI
4
  from llama_index.embeddings.huggingface import HuggingFaceEmbedding
@@ -8,7 +9,6 @@ import shutil
8
  import os
9
  import time
10
 
11
-
12
  icons = {"assistant": "robot.png", "user": "man-kddi.png"}
13
 
14
  # Configure the Llama index settings
@@ -17,7 +17,6 @@ Settings.llm = HuggingFaceInferenceAPI(
17
  tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
18
  context_window=3900,
19
  token=os.getenv("HF_TOKEN"),
20
- # max_new_tokens=1000,
21
  generate_kwargs={"temperature": 0.1},
22
  )
23
  Settings.embed_model = HuggingFaceEmbedding(
@@ -33,33 +32,39 @@ os.makedirs(DATA_DIR, exist_ok=True)
33
  os.makedirs(PERSIST_DIR, exist_ok=True)
34
 
35
  def data_ingestion():
36
- documents = SimpleDirectoryReader(DATA_DIR).load_data()
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  storage_context = StorageContext.from_defaults()
38
  index = VectorStoreIndex.from_documents(documents)
39
  index.storage_context.persist(persist_dir=PERSIST_DIR)
40
 
41
  def remove_old_files():
42
- # Specify the directory path you want to clear
43
  directory_path = "data"
44
-
45
- # Remove all files and subdirectories in the specified directory
46
  shutil.rmtree(directory_path)
47
-
48
- # Recreate an empty directory if needed
49
  os.makedirs(directory_path)
50
 
51
  def extract_transcript_details(youtube_video_url):
52
  try:
53
- video_id=youtube_video_url.split("=")[1]
54
-
55
- transcript_text=YouTubeTranscriptApi.get_transcript(video_id)
56
 
57
  transcript = ""
58
  for i in transcript_text:
59
  transcript += " " + i["text"]
60
 
61
  return transcript
62
-
63
  except Exception as e:
64
  st.error(e)
65
 
@@ -67,21 +72,20 @@ def handle_query(query):
67
  storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
68
  index = load_index_from_storage(storage_context)
69
  chat_text_qa_msgs = [
70
- (
71
- "user",
72
- """You are Q&A assistant named CHATTO, created by Pachaiappan [linkdin](https://www.linkedin.com/in/pachaiappan) an AI Specialist. Your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, you only say the user to 'Please ask a questions within the context of the document'.
73
- Context:
74
- {context_str}
75
- Question:
76
- {query_str}
77
- """
78
- )
79
  ]
80
  text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
81
  query_engine = index.as_query_engine(text_qa_template=text_qa_template)
82
  answer = query_engine.query(query)
83
 
84
-
85
  if hasattr(answer, 'response'):
86
  return answer.response
87
  elif isinstance(answer, dict) and 'response' in answer:
@@ -94,7 +98,6 @@ def streamer(text):
94
  yield i
95
  time.sleep(0.001)
96
 
97
-
98
  # Streamlit app initialization
99
  st.title("Chat with your PDF📄")
100
  st.markdown("**Built by [Pachaiappan❤️](https://mr-vicky-01.github.io/Portfolio/)**")
@@ -108,15 +111,15 @@ for message in st.session_state.messages:
108
 
109
  with st.sidebar:
110
  st.title("Menu:")
111
- uploaded_file = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button")
112
  video_url = st.text_input("Enter Youtube Video Link: ")
113
  if st.button("Submit & Process"):
114
  with st.spinner("Processing..."):
115
- if len(os.listdir("data")) !=0:
116
  remove_old_files()
117
 
118
  if uploaded_file:
119
- filepath = "data/saved_pdf.pdf"
120
  with open(filepath, "wb") as f:
121
  f.write(uploaded_file.getbuffer())
122
 
@@ -125,10 +128,10 @@ with st.sidebar:
125
  with open("data/saved_text.txt", "w") as file:
126
  file.write(extracted_text)
127
 
128
- data_ingestion() # Process PDF every time new file is uploaded
129
  st.success("Done")
130
 
131
- user_prompt = st.chat_input("Ask me anything about the content of the PDF:")
132
 
133
  if user_prompt and (uploaded_file or video_url):
134
  st.session_state.messages.append({'role': 'user', "content": user_prompt})
@@ -140,4 +143,3 @@ if user_prompt and (uploaded_file or video_url):
140
  response = handle_query(user_prompt)
141
  with st.chat_message("user", avatar="robot.png"):
142
  st.write_stream(streamer(response))
143
- st.session_state.messages.append({'role': 'assistant', "content": response})
 
1
  import streamlit as st
2
+ import pandas as pd
3
  from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate
4
  from llama_index.llms.huggingface import HuggingFaceInferenceAPI
5
  from llama_index.embeddings.huggingface import HuggingFaceEmbedding
 
9
  import os
10
  import time
11
 
 
12
  icons = {"assistant": "robot.png", "user": "man-kddi.png"}
13
 
14
  # Configure the Llama index settings
 
17
  tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
18
  context_window=3900,
19
  token=os.getenv("HF_TOKEN"),
 
20
  generate_kwargs={"temperature": 0.1},
21
  )
22
  Settings.embed_model = HuggingFaceEmbedding(
 
32
  os.makedirs(PERSIST_DIR, exist_ok=True)
33
 
34
  def data_ingestion():
35
+ documents = []
36
+
37
+ # Load documents from the data directory
38
+ documents += SimpleDirectoryReader(DATA_DIR).load_data()
39
+
40
+ # Process and load CSV files
41
+ for file in os.listdir(DATA_DIR):
42
+ if file.endswith(".csv"):
43
+ csv_path = os.path.join(DATA_DIR, file)
44
+ df = pd.read_csv(csv_path)
45
+ # Convert DataFrame to a list of text strings (or any other format suitable for your embeddings)
46
+ csv_texts = df.apply(lambda row: " ".join(row.astype(str)), axis=1).tolist()
47
+ documents += csv_texts
48
+
49
  storage_context = StorageContext.from_defaults()
50
  index = VectorStoreIndex.from_documents(documents)
51
  index.storage_context.persist(persist_dir=PERSIST_DIR)
52
 
53
  def remove_old_files():
 
54
  directory_path = "data"
 
 
55
  shutil.rmtree(directory_path)
 
 
56
  os.makedirs(directory_path)
57
 
58
  def extract_transcript_details(youtube_video_url):
59
  try:
60
+ video_id = youtube_video_url.split("=")[1]
61
+ transcript_text = YouTubeTranscriptApi.get_transcript(video_id)
 
62
 
63
  transcript = ""
64
  for i in transcript_text:
65
  transcript += " " + i["text"]
66
 
67
  return transcript
 
68
  except Exception as e:
69
  st.error(e)
70
 
 
72
  storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
73
  index = load_index_from_storage(storage_context)
74
  chat_text_qa_msgs = [
75
+ (
76
+ "user",
77
+ """You are Q&A assistant named CHATTO, created by Pachaiappan [linkdin](https://www.linkedin.com/in/pachaiappan) an AI Specialist. Your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, you only say the user to 'Please ask a questions within the context of the document'.
78
+ Context:
79
+ {context_str}
80
+ Question:
81
+ {query_str}
82
+ """
83
+ )
84
  ]
85
  text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
86
  query_engine = index.as_query_engine(text_qa_template=text_qa_template)
87
  answer = query_engine.query(query)
88
 
 
89
  if hasattr(answer, 'response'):
90
  return answer.response
91
  elif isinstance(answer, dict) and 'response' in answer:
 
98
  yield i
99
  time.sleep(0.001)
100
 
 
101
  # Streamlit app initialization
102
  st.title("Chat with your PDF📄")
103
  st.markdown("**Built by [Pachaiappan❤️](https://mr-vicky-01.github.io/Portfolio/)**")
 
111
 
112
  with st.sidebar:
113
  st.title("Menu:")
114
+ uploaded_file = st.file_uploader("Upload your PDF/CSV Files and Click on the Submit & Process Button")
115
  video_url = st.text_input("Enter Youtube Video Link: ")
116
  if st.button("Submit & Process"):
117
  with st.spinner("Processing..."):
118
+ if len(os.listdir("data")) != 0:
119
  remove_old_files()
120
 
121
  if uploaded_file:
122
+ filepath = os.path.join(DATA_DIR, uploaded_file.name)
123
  with open(filepath, "wb") as f:
124
  f.write(uploaded_file.getbuffer())
125
 
 
128
  with open("data/saved_text.txt", "w") as file:
129
  file.write(extracted_text)
130
 
131
+ data_ingestion() # Process every time new file is uploaded
132
  st.success("Done")
133
 
134
+ user_prompt = st.chat_input("Ask me anything about the content of the PDF/CSV:")
135
 
136
  if user_prompt and (uploaded_file or video_url):
137
  st.session_state.messages.append({'role': 'user', "content": user_prompt})
 
143
  response = handle_query(user_prompt)
144
  with st.chat_message("user", avatar="robot.png"):
145
  st.write_stream(streamer(response))