Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate | |
| from llama_index.llms.huggingface import HuggingFaceInferenceAPI | |
| from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
| from llama_index.core import Settings | |
| from youtube_transcript_api import YouTubeTranscriptApi | |
| import shutil | |
| import os | |
| import time | |
| icons = {"assistant": "robot.png", "user": "man-kddi.png"} | |
| # Configure the Llama index settings | |
| Settings.llm = HuggingFaceInferenceAPI( | |
| model_name="meta-llama/Meta-Llama-3-8B-Instruct", | |
| tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", | |
| context_window=3900, | |
| token=os.getenv("HF_TOKEN"), | |
| generate_kwargs={"temperature": 0.1}, | |
| ) | |
| Settings.embed_model = HuggingFaceEmbedding( | |
| model_name="BAAI/bge-small-en-v1.5" | |
| ) | |
| # Define the directory for persistent storage and data | |
| PERSIST_DIR = "./db" | |
| DATA_DIR = "data" | |
| # Ensure data directory exists | |
| os.makedirs(DATA_DIR, exist_ok=True) | |
| os.makedirs(PERSIST_DIR, exist_ok=True) | |
| def data_ingestion(): | |
| documents = SimpleDirectoryReader(DATA_DIR).load_data() | |
| storage_context = StorageContext.from_defaults() | |
| index = VectorStoreIndex.from_documents(documents) | |
| index.storage_context.persist(persist_dir=PERSIST_DIR) | |
| def remove_old_files(): | |
| directory_path = "data" | |
| shutil.rmtree(directory_path) | |
| os.makedirs(directory_path) | |
| def extract_transcript_details(youtube_video_url): | |
| try: | |
| video_id = youtube_video_url.split("=")[1] | |
| transcript_text = YouTubeTranscriptApi.get_transcript(video_id) | |
| transcript = "" | |
| for i in transcript_text: | |
| transcript += " " + i["text"] | |
| return transcript | |
| except Exception as e: | |
| st.error(e) | |
| def handle_query(query): | |
| storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) | |
| index = load_index_from_storage(storage_context) | |
| chat_text_qa_msgs = [ | |
| ( | |
| "user", | |
| """You are Q&A assistant named CHATTO, created by Pachaiappan [linkdin](https://www.linkedin.com/in/pachaiappan) an AI Specialist. Your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, you only say the user to 'Please ask a questions within the context of the document'. | |
| Context: | |
| {context_str} | |
| Question: | |
| {query_str} | |
| """ | |
| ) | |
| ] | |
| text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) | |
| query_engine = index.as_query_engine(text_qa_template=text_qa_template) | |
| answer = query_engine.query(query) | |
| if hasattr(answer, 'response'): | |
| return answer.response | |
| elif isinstance(answer, dict) and 'response' in answer: | |
| return answer['response'] | |
| else: | |
| return "Sorry, I couldn't find an answer." | |
| def streamer(text): | |
| for i in text: | |
| yield i | |
| time.sleep(0.001) | |
| # Streamlit app initialization | |
| st.title("Chat with your PDF📄") | |
| st.markdown("**Built by [Pachaiappan❤️](https://mr-vicky-01.github.io/Portfolio/)**") | |
| if 'messages' not in st.session_state: | |
| st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload a PDF/Youtube Video link and ask me anything about the content.'}] | |
| for message in st.session_state.messages: | |
| with st.chat_message(message['role'], avatar=icons[message['role']]): | |
| st.write(message['content']) | |
| with st.sidebar: | |
| st.title("Menu:") | |
| uploaded_file = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button") | |
| video_url = st.text_input("Enter Youtube Video Link: ") | |
| if st.button("Submit & Process"): | |
| with st.spinner("Processing..."): | |
| if len(os.listdir("data")) != 0: | |
| remove_old_files() | |
| if uploaded_file: | |
| filepath = "data/saved_pdf.pdf" | |
| with open(filepath, "wb") as f: | |
| f.write(uploaded_file.getbuffer()) | |
| if video_url: | |
| extracted_text = extract_transcript_details(video_url) | |
| with open("data/saved_text.txt", "w") as file: | |
| file.write(extracted_text) | |
| data_ingestion() # Process PDF every time new file is uploaded | |
| st.success("Done") | |
| user_prompt = st.chat_input("Ask me anything about the content of the PDF:") | |
| if user_prompt and (uploaded_file or video_url): | |
| st.session_state.messages.append({'role': 'user', "content": user_prompt}) | |
| with st.chat_message("user", avatar="man-kddi.png"): | |
| st.write(user_prompt) | |
| # Trigger assistant's response retrieval and update UI | |
| with st.spinner("Thinking..."): | |
| response = handle_query(user_prompt) | |
| with st.chat_message("user", avatar="robot.png"): | |
| st.write_stream(streamer(response)) | |