Spaces:
Running
Running
from PIL import Image | |
from transformers import BlipProcessor, BlipForConditionalGeneration | |
from langchain import HuggingFaceHub, LLMChain, PromptTemplate | |
import gradio as gr | |
import numpy as np | |
import requests | |
import os | |
# Load image captioning model | |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") | |
def generate_caption_from_image(image_path): | |
# Process the image and generate caption | |
raw_image = Image.open(image_path).convert("RGB") | |
inputs = processor(raw_image, return_tensors="pt") | |
out = model.generate(**inputs) | |
caption = processor.decode(out[0], skip_special_tokens=True) | |
return caption | |
def generate_story_from_caption(caption): | |
# Generate story based on caption | |
llm = HuggingFaceHub(huggingfacehub_api_token=os.getenv('HUGGING_FACE'), | |
repo_id="tiiuae/falcon-7b-instruct", | |
verbose=False, | |
model_kwargs={"temperature": 0.2, "max_new_tokens": 4000}) | |
template = """You are a story teller. | |
You get a scenario as an input text, and generate a short story out of it. | |
Context: {scenario} | |
Story:""" | |
prompt = PromptTemplate(template=template, input_variables=["scenario"]) | |
# Let's create our LLM chain now | |
chain = LLMChain(prompt=prompt, llm=llm) | |
story = chain.run(caption) | |
start_index = story.find("Story:") + len("Story:") | |
# Extract the text after "Story:" | |
story = story[start_index:].strip() | |
return story | |
def text_to_speech(text): | |
headers = {"Authorization": f"Bearer {os.getenv('HUGGING_FACE')}"} | |
payload = {"inputs": text} | |
API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits" | |
response = requests.post(API_URL, headers=headers, json=payload) | |
if response.status_code == 200: | |
with open("output.mp3", "wb") as f: | |
f.write(response.content) | |
return "output.mp3" | |
def generate_story_from_image(image_input): | |
input_image = Image.fromarray(image_input) | |
input_image.save("input_image.jpg") | |
image_path = 'input_image.jpg' | |
caption = generate_caption_from_image(image_path) | |
story = generate_story_from_caption(caption) | |
audio = text_to_speech(story) | |
return audio | |
# Define the input and output components | |
inputs = gr.Image(label="Image") | |
outputs = gr.Audio(label="Story Audio") | |
# Create the Gradio interface | |
gr.Interface(fn=generate_story_from_image, inputs=inputs, outputs=outputs, title="Story Teller").launch(debug=True) |