Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""app.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1E-6YoHEsjoKc6FVXzQHbtnRja-68brYc
|
8 |
+
|
9 |
+
numpy==1.23.5
|
10 |
+
transformers
|
11 |
+
datasets
|
12 |
+
soundfile
|
13 |
+
torch
|
14 |
+
torchaudio
|
15 |
+
sentencepiece
|
16 |
+
speechbrain==0.5.16
|
17 |
+
librosa
|
18 |
+
"""
|
19 |
+
|
20 |
+
!pip install transformers datasets soundfile torch torchaudio sentencepiece speechbrain librosa
|
21 |
+
|
22 |
+
!pip install -q gradio
|
23 |
+
|
24 |
+
!pip install -q spaces
|
25 |
+
|
26 |
+
import gradio as gr
|
27 |
+
import torch
|
28 |
+
import soundfile as sf
|
29 |
+
import spaces
|
30 |
+
import os
|
31 |
+
import numpy as np
|
32 |
+
import re
|
33 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
34 |
+
from speechbrain.pretrained import EncoderClassifier
|
35 |
+
from datasets import load_dataset
|
36 |
+
|
37 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
38 |
+
|
39 |
+
def load_models_and_data():
|
40 |
+
model_name = "microsoft/speecht5_tts"
|
41 |
+
processor = SpeechT5Processor.from_pretrained(model_name)
|
42 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("Moustapha91/speecht5_tts__v3_sn").to(device)
|
43 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
44 |
+
|
45 |
+
spk_model_name = "speechbrain/spkrec-xvect-voxceleb"
|
46 |
+
speaker_model = EncoderClassifier.from_hparams(
|
47 |
+
source=spk_model_name,
|
48 |
+
run_opts={"device": device},
|
49 |
+
savedir=os.path.join("/tmp", spk_model_name),
|
50 |
+
)
|
51 |
+
|
52 |
+
# Load a sample from a dataset for default embedding
|
53 |
+
dataset = load_dataset("Alwaly/Wolof_TTS", split="train")
|
54 |
+
dataset = dataset.select(range(12003))
|
55 |
+
dataset = dataset.train_test_split(test_size=0.1)
|
56 |
+
example = dataset['test'][8]
|
57 |
+
|
58 |
+
return model, processor, vocoder, speaker_model, example
|
59 |
+
|
60 |
+
model, processor, vocoder, speaker_model, default_example = load_models_and_data()
|
61 |
+
|
62 |
+
def create_speaker_embedding(waveform):
|
63 |
+
with torch.no_grad():
|
64 |
+
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform).unsqueeze(0).to(device))
|
65 |
+
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
|
66 |
+
speaker_embeddings = speaker_embeddings.squeeze()
|
67 |
+
return speaker_embeddings
|
68 |
+
|
69 |
+
def prepare_default_embedding(example):
|
70 |
+
audio = example["audio"]
|
71 |
+
return create_speaker_embedding(audio["array"])
|
72 |
+
|
73 |
+
default_embedding = prepare_default_embedding(default_example)
|
74 |
+
|
75 |
+
replacements = [
|
76 |
+
("а", "a"),
|
77 |
+
("à", "a"),
|
78 |
+
('á', "a"),
|
79 |
+
('ã', "a"),
|
80 |
+
('ä', "a"),
|
81 |
+
('α', "a"),
|
82 |
+
("ă", "a"),
|
83 |
+
("â", "a"),
|
84 |
+
('ā', "a"),
|
85 |
+
('ą', "a"),
|
86 |
+
('ɓ', "b"),
|
87 |
+
('β', "b"),
|
88 |
+
("ç", "c"),
|
89 |
+
('с', "c"),
|
90 |
+
('ɗ', "d"),
|
91 |
+
('đ', "d"),
|
92 |
+
("è", "e"),
|
93 |
+
('ẽ', "e"),
|
94 |
+
("ë", "e"),
|
95 |
+
("ð", "e"),
|
96 |
+
('έ', "e"),
|
97 |
+
('ɐ', "e"),
|
98 |
+
('ə', "e"),
|
99 |
+
('ξ', "e"),
|
100 |
+
('н', "h"),
|
101 |
+
("î", "i"),
|
102 |
+
('í', "i"),
|
103 |
+
("ị", "i"),
|
104 |
+
("ï", "i"),
|
105 |
+
('к', "k"),
|
106 |
+
('ł', "l"),
|
107 |
+
("ŋ", "n"),
|
108 |
+
('ń', "n"),
|
109 |
+
("ñ", "n"),
|
110 |
+
('ῆ', "n"),
|
111 |
+
('й', "n"),
|
112 |
+
('η', "n"),
|
113 |
+
("ó", "o"),
|
114 |
+
('ồ', "o"),
|
115 |
+
('ớ', "o"),
|
116 |
+
('ὀ', "o"),
|
117 |
+
("ô", "o"),
|
118 |
+
("õ", "o"),
|
119 |
+
('ò', "o"),
|
120 |
+
('ø', "o"),
|
121 |
+
('σ', "o"),
|
122 |
+
("ο", "o"),
|
123 |
+
("ο", "o"),
|
124 |
+
('р', "p"),
|
125 |
+
('ρ', "p"),
|
126 |
+
("т", "t"),
|
127 |
+
('ƭ', "t"),
|
128 |
+
('ц', "u"),
|
129 |
+
("ù", "u"),
|
130 |
+
("û", "u"),
|
131 |
+
('μ', "u"),
|
132 |
+
('ш', "w"),
|
133 |
+
# ('у', "y"),
|
134 |
+
# ('ý', "y"),
|
135 |
+
# ('γ', "y"),
|
136 |
+
]
|
137 |
+
|
138 |
+
number_words = {
|
139 |
+
0: "dara", 1: "benn", 2: "ñaar", 3: "ñett", 4: "ñent", 5: "juróom ", 6: "juróom ak benn", 7: "juróom ak ñaar", 8: "juróom ak ñett", 9: "juróom ak ñent",
|
140 |
+
10: "fukk", 11: "fukk ak benn", 12: "fukk ak ñaar", 13: "fukk ak ñett", 14: "fukk ak ñent", 15: "fukk", 16: "fukk ak juróom ben", 17: "fukk ak juróom ñaar",
|
141 |
+
18: "fukk ak juróom ñett", 19: "fukk ak juróom ñent", 20: "ñaar fukk", 30: "ñett fukk", 40: "ñent fukk", 50: "juróom fukk", 60: "juróom benn fukk", 70: "juróom ñaar fukk",
|
142 |
+
80: "juróom ñett fukk", 90: "juróom ñent fukk", 100: "téeméer", 1000: " junni"
|
143 |
+
}
|
144 |
+
|
145 |
+
def number_to_words(number):
|
146 |
+
if number < 20:
|
147 |
+
return number_words[number]
|
148 |
+
elif number < 100:
|
149 |
+
tens, unit = divmod(number, 10)
|
150 |
+
return number_words[tens * 10] + (" " + number_words[unit] if unit else "")
|
151 |
+
elif number < 1000:
|
152 |
+
hundreds, remainder = divmod(number, 100)
|
153 |
+
return (number_words[hundreds] + " yüz" if hundreds > 1 else "yüz") + (" " + number_to_words(remainder) if remainder else "")
|
154 |
+
elif number < 1000000:
|
155 |
+
thousands, remainder = divmod(number, 1000)
|
156 |
+
return (number_to_words(thousands) + " bin" if thousands > 1 else "bin") + (" " + number_to_words(remainder) if remainder else "")
|
157 |
+
elif number < 1000000000:
|
158 |
+
millions, remainder = divmod(number, 1000000)
|
159 |
+
return number_to_words(millions) + " milyon" + (" " + number_to_words(remainder) if remainder else "")
|
160 |
+
elif number < 1000000000000:
|
161 |
+
billions, remainder = divmod(number, 1000000000)
|
162 |
+
return number_to_words(billions) + " milyar" + (" " + number_to_words(remainder) if remainder else "")
|
163 |
+
else:
|
164 |
+
return str(number)
|
165 |
+
|
166 |
+
def replace_numbers_with_words(text):
|
167 |
+
def replace(match):
|
168 |
+
number = int(match.group())
|
169 |
+
return number_to_words(number)
|
170 |
+
|
171 |
+
# Find the numbers and change with words.
|
172 |
+
result = re.sub(r'\b\d+\b', replace, text)
|
173 |
+
|
174 |
+
return result
|
175 |
+
|
176 |
+
def normalize_text(text):
|
177 |
+
# Convert to lowercase
|
178 |
+
text = text.lower()
|
179 |
+
|
180 |
+
# Replace numbers with words
|
181 |
+
text = replace_numbers_with_words(text)
|
182 |
+
|
183 |
+
# Apply character replacements
|
184 |
+
for old, new in replacements:
|
185 |
+
text = text.replace(old, new)
|
186 |
+
|
187 |
+
# Remove punctuation
|
188 |
+
text = re.sub(r'[^\w\s]', '', text)
|
189 |
+
|
190 |
+
return text
|
191 |
+
|
192 |
+
@spaces.GPU(duration=60)
|
193 |
+
def text_to_speech(text, audio_file=None):
|
194 |
+
# Normalize the input text
|
195 |
+
normalized_text = normalize_text(text)
|
196 |
+
|
197 |
+
# Prepare the input for the model
|
198 |
+
inputs = processor(text=normalized_text, return_tensors="pt").to(device)
|
199 |
+
|
200 |
+
# Use the default speaker embedding
|
201 |
+
speaker_embeddings = default_embedding
|
202 |
+
|
203 |
+
# Generate speech
|
204 |
+
with torch.no_grad():
|
205 |
+
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings.unsqueeze(0), vocoder=vocoder)
|
206 |
+
|
207 |
+
speech_np = speech.cpu().numpy()
|
208 |
+
|
209 |
+
return (16000, speech_np)
|
210 |
+
|
211 |
+
iface = gr.Interface(
|
212 |
+
fn=text_to_speech,
|
213 |
+
inputs=[
|
214 |
+
gr.Textbox(label="Enter Woloftext to convert to speech")
|
215 |
+
],
|
216 |
+
outputs=[
|
217 |
+
gr.Audio(label="Generated Speech", type="numpy")
|
218 |
+
],
|
219 |
+
title="Wolof SpeechT5 Text-to-Speech Demo",
|
220 |
+
description="Enter Wolof text, and listen to the generated speech."
|
221 |
+
)
|
222 |
+
|
223 |
+
iface.launch(share=True)
|
224 |
+
|