File size: 8,204 Bytes
6ecf14b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
{
 "cells": [
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Semantic text search using embeddings\n",
    "\n",
    "We can search through all our reviews semantically in a very efficient manner and at very low cost, by embedding our search query, and then finding the most similar reviews. The dataset is created in the [Obtain_dataset Notebook](Obtain_dataset.ipynb)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import numpy as np\n",
    "from ast import literal_eval\n",
    "\n",
    "datafile_path = \"data/fine_food_reviews_with_embeddings_1k.csv\"\n",
    "\n",
    "df = pd.read_csv(datafile_path)\n",
    "df[\"embedding\"] = df.embedding.apply(literal_eval).apply(np.array)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0      [0.007018072064965963, -0.02731654793024063, 0...\n",
       "1      [-0.003140551969408989, -0.009995664469897747,...\n",
       "2      [-0.01757248118519783, -8.266511576948687e-05,...\n",
       "3      [-0.0013932279543951154, -0.011112828738987446...\n",
       "4      [-0.01757248118519783, -8.266511576948687e-05,...\n",
       "                             ...                        \n",
       "995    [0.00011091353371739388, -0.00466986745595932,...\n",
       "996    [-0.020869314670562744, -0.013138455338776112,...\n",
       "997    [-0.009749102406203747, -0.0068712360225617886...\n",
       "998    [-0.00521062919870019, 0.0009606690146028996, ...\n",
       "999    [-0.006057822611182928, -0.015015840530395508,...\n",
       "Name: embedding, Length: 1000, dtype: object"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df['embedding']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "arr=df.head(1)['embedding'].values"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(1536,)"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "arr[0].shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here we compare the cosine similarity of the embeddings of the query and the documents, and show top_n best matches."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Good Buy:  I liked the beans. They were vacuum sealed, plump and moist. Would recommend them for any use. I personally split and stuck them in some vodka to make vanilla extract. Yum!\n",
      "\n",
      "Jamaican Blue beans:  Excellent coffee bean for roasting. Our family just purchased another 5 pounds for more roasting. Plenty of flavor and mild on acidity when roasted to a dark brown bean and befor\n",
      "\n",
      "Delicious!:  I enjoy this white beans seasoning, it gives a rich flavor to the beans I just love it, my mother in law didn't know about this Zatarain's brand and now she is traying different seasoning\n",
      "\n"
     ]
    }
   ],
   "source": [
    "from openai.embeddings_utils import get_embedding, cosine_similarity\n",
    "\n",
    "# search through the reviews for a specific product\n",
    "def search_reviews(df, product_description, n=3, pprint=True):\n",
    "    product_embedding = get_embedding(\n",
    "        product_description,\n",
    "        engine=\"text-embedding-ada-002\"\n",
    "    )\n",
    "    df[\"similarity\"] = df.embedding.apply(lambda x: cosine_similarity(x, product_embedding))\n",
    "\n",
    "    results = (\n",
    "        df.sort_values(\"similarity\", ascending=False)\n",
    "        .head(n)\n",
    "        .combined.str.replace(\"Title: \", \"\")\n",
    "        .str.replace(\"; Content:\", \": \")\n",
    "    )\n",
    "    if pprint:\n",
    "        for r in results:\n",
    "            print(r[:200])\n",
    "            print()\n",
    "    return results\n",
    "\n",
    "\n",
    "results = search_reviews(df, \"delicious beans\", n=3)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Tasty and Quick Pasta:  Barilla Whole Grain Fusilli with Vegetable Marinara is tasty and has an excellent chunky vegetable marinara.  I just wish there was more of it.  If you aren't starving or on a \n",
      "\n",
      "sooo good:  tastes so good. Worth the money. My boyfriend hates wheat pasta and LOVES this. cooks fast tastes great.I love this brand and started buying more of their pastas. Bulk is best.\n",
      "\n",
      "Handy:  Love the idea of ready in a minute pasta and for that alone this product gets praise.  The pasta is whole grain so that's a big plus and it actually comes out al dente.  The vegetable marinara\n",
      "\n"
     ]
    }
   ],
   "source": [
    "results = search_reviews(df, \"whole wheat pasta\", n=3)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can search through these reviews easily. To speed up computation, we can use a special algorithm, aimed at faster search through embeddings."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "great product, poor delivery:  The coffee is excellent and I am a repeat buyer.  Problem this time was with the UPS delivery.  They left the box in front of my garage door in the middle of the drivewa\n",
      "\n"
     ]
    }
   ],
   "source": [
    "results = search_reviews(df, \"bad delivery\", n=1)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "As we can see, this can immediately deliver a lot of value. In this example we show being able to quickly find the examples of delivery failures."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Extremely dissapointed:  Hi,<br />I am very disappointed with the past shipment I received of the ONE coconut water. 3 of the boxes were leaking and the coconut water was spoiled.<br /><br />Thanks.<b\n",
      "\n"
     ]
    }
   ],
   "source": [
    "results = search_reviews(df, \"spoilt\", n=1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Good food:  The only dry food my queen cat will eat. Helps prevent hair balls. Good packaging. Arrives promptly. Recommended by a friend who sells pet food.\n",
      "\n",
      "The cats like it:  My 7 cats like this food but it is a little yucky for the human. Pieces of mackerel swimming in a dark broth. It is billed as a \"complete\" food and contains carrots, peas and pasta.\n",
      "\n"
     ]
    }
   ],
   "source": [
    "results = search_reviews(df, \"pet food\", n=2)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.11"
  },
  "vscode": {
   "interpreter": {
    "hash": "365536dcbde60510dc9073d6b991cd35db2d9bac356a11f5b64279a5e6708b97"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}