File size: 16,311 Bytes
6ecf14b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 1. Load the dataset\n",
    "\n",
    "The dataset used in this example is [fine-food reviews](https://www.kaggle.com/snap/amazon-fine-food-reviews) from Amazon. The dataset contains a total of 568,454 food reviews Amazon users left up to October 2012. We will use a subset of this dataset, consisting of 1,000 most recent reviews for illustration purposes. The reviews are in English and tend to be positive or negative. Each review has a ProductId, UserId, Score, review title (Summary) and review body (Text).\n",
    "\n",
    "We will combine the review summary and review text into a single combined text. The model will encode this combined text and it will output a single vector embedding."
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "To run this notebook, you will need to install: pandas, openai, transformers, plotly, matplotlib, scikit-learn, torch (transformer dep), torchvision, and scipy."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "# imports\n",
    "import pandas as pd\n",
    "import tiktoken\n",
    "from openai.embeddings_utils import get_embedding\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "# embedding model parameters\n",
    "embedding_model = \"text-embedding-ada-002\"\n",
    "embedding_encoding = \"cl100k_base\"  # this the encoding for text-embedding-ada-002\n",
    "max_tokens = 8000  # the maximum for text-embedding-ada-002 is 8191\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Time</th>\n",
       "      <th>ProductId</th>\n",
       "      <th>UserId</th>\n",
       "      <th>Score</th>\n",
       "      <th>Summary</th>\n",
       "      <th>Text</th>\n",
       "      <th>combined</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>1351123200</td>\n",
       "      <td>B003XPF9BO</td>\n",
       "      <td>A3R7JR3FMEBXQB</td>\n",
       "      <td>5</td>\n",
       "      <td>where does one  start...and stop... with a tre...</td>\n",
       "      <td>Wanted to save some to bring to my Chicago fam...</td>\n",
       "      <td>Title: where does one  start...and stop... wit...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>1351123200</td>\n",
       "      <td>B003JK537S</td>\n",
       "      <td>A3JBPC3WFUT5ZP</td>\n",
       "      <td>1</td>\n",
       "      <td>Arrived in pieces</td>\n",
       "      <td>Not pleased at all. When I opened the box, mos...</td>\n",
       "      <td>Title: Arrived in pieces; Content: Not pleased...</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "         Time   ProductId          UserId  Score  \\\n",
       "0  1351123200  B003XPF9BO  A3R7JR3FMEBXQB      5   \n",
       "1  1351123200  B003JK537S  A3JBPC3WFUT5ZP      1   \n",
       "\n",
       "                                             Summary  \\\n",
       "0  where does one  start...and stop... with a tre...   \n",
       "1                                  Arrived in pieces   \n",
       "\n",
       "                                                Text  \\\n",
       "0  Wanted to save some to bring to my Chicago fam...   \n",
       "1  Not pleased at all. When I opened the box, mos...   \n",
       "\n",
       "                                            combined  \n",
       "0  Title: where does one  start...and stop... wit...  \n",
       "1  Title: Arrived in pieces; Content: Not pleased...  "
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# load & inspect dataset\n",
    "input_datapath = \"data/fine_food_reviews_1k.csv\"  # to save space, we provide a pre-filtered dataset\n",
    "df = pd.read_csv(input_datapath, index_col=0)\n",
    "df = df[[\"Time\", \"ProductId\", \"UserId\", \"Score\", \"Summary\", \"Text\"]]\n",
    "df = df.dropna()\n",
    "df[\"combined\"] = (\n",
    "    \"Title: \" + df.Summary.str.strip() + \"; Content: \" + df.Text.str.strip()\n",
    ")\n",
    "df.head(2)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "1000"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# subsample to 1k most recent reviews and remove samples that are too long\n",
    "top_n = 1000\n",
    "df = df.sort_values(\"Time\").tail(top_n * 2)  # first cut to first 2k entries, assuming less than half will be filtered out\n",
    "df.drop(\"Time\", axis=1, inplace=True)\n",
    "\n",
    "encoding = tiktoken.get_encoding(embedding_encoding)\n",
    "\n",
    "# omit reviews that are too long to embed\n",
    "df[\"n_tokens\"] = df.combined.apply(lambda x: len(encoding.encode(x)))\n",
    "df = df[df.n_tokens <= max_tokens].tail(top_n)\n",
    "len(df)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>ProductId</th>\n",
       "      <th>UserId</th>\n",
       "      <th>Score</th>\n",
       "      <th>Summary</th>\n",
       "      <th>Text</th>\n",
       "      <th>combined</th>\n",
       "      <th>n_tokens</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>B003XPF9BO</td>\n",
       "      <td>A3R7JR3FMEBXQB</td>\n",
       "      <td>5</td>\n",
       "      <td>where does one  start...and stop... with a tre...</td>\n",
       "      <td>Wanted to save some to bring to my Chicago fam...</td>\n",
       "      <td>Title: where does one  start...and stop... wit...</td>\n",
       "      <td>52</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>297</th>\n",
       "      <td>B003VXHGPK</td>\n",
       "      <td>A21VWSCGW7UUAR</td>\n",
       "      <td>4</td>\n",
       "      <td>Good, but not Wolfgang Puck good</td>\n",
       "      <td>Honestly, I have to admit that I expected a li...</td>\n",
       "      <td>Title: Good, but not Wolfgang Puck good; Conte...</td>\n",
       "      <td>178</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>296</th>\n",
       "      <td>B008JKTTUA</td>\n",
       "      <td>A34XBAIFT02B60</td>\n",
       "      <td>1</td>\n",
       "      <td>Should advertise coconut as an ingredient more...</td>\n",
       "      <td>First, these should be called Mac - Coconut ba...</td>\n",
       "      <td>Title: Should advertise coconut as an ingredie...</td>\n",
       "      <td>78</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>295</th>\n",
       "      <td>B000LKTTTW</td>\n",
       "      <td>A14MQ40CCU8B13</td>\n",
       "      <td>5</td>\n",
       "      <td>Best tomato soup</td>\n",
       "      <td>I have a hard time finding packaged food of an...</td>\n",
       "      <td>Title: Best tomato soup; Content: I have a har...</td>\n",
       "      <td>111</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>294</th>\n",
       "      <td>B001D09KAM</td>\n",
       "      <td>A34XBAIFT02B60</td>\n",
       "      <td>1</td>\n",
       "      <td>Should advertise coconut as an ingredient more...</td>\n",
       "      <td>First, these should be called Mac - Coconut ba...</td>\n",
       "      <td>Title: Should advertise coconut as an ingredie...</td>\n",
       "      <td>78</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>623</th>\n",
       "      <td>B0000CFXYA</td>\n",
       "      <td>A3GS4GWPIBV0NT</td>\n",
       "      <td>1</td>\n",
       "      <td>Strange inflammation response</td>\n",
       "      <td>Truthfully wasn't crazy about the taste of the...</td>\n",
       "      <td>Title: Strange inflammation response; Content:...</td>\n",
       "      <td>110</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>624</th>\n",
       "      <td>B0001BH5YM</td>\n",
       "      <td>A1BZ3HMAKK0NC</td>\n",
       "      <td>5</td>\n",
       "      <td>My favorite and only  MUSTARD</td>\n",
       "      <td>You've just got to experience this mustard... ...</td>\n",
       "      <td>Title: My favorite and only  MUSTARD; Content:...</td>\n",
       "      <td>80</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>625</th>\n",
       "      <td>B0009ET7TC</td>\n",
       "      <td>A2FSDQY5AI6TNX</td>\n",
       "      <td>5</td>\n",
       "      <td>My furbabies LOVE these!</td>\n",
       "      <td>Shake the container and they come running. Eve...</td>\n",
       "      <td>Title: My furbabies LOVE these!; Content: Shak...</td>\n",
       "      <td>47</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>619</th>\n",
       "      <td>B007PA32L2</td>\n",
       "      <td>A15FF2P7RPKH6G</td>\n",
       "      <td>5</td>\n",
       "      <td>got this for the daughter</td>\n",
       "      <td>all i have heard since she got a kuerig is why...</td>\n",
       "      <td>Title: got this for the daughter; Content: all...</td>\n",
       "      <td>50</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>999</th>\n",
       "      <td>B001EQ5GEO</td>\n",
       "      <td>A3VYU0VO6DYV6I</td>\n",
       "      <td>5</td>\n",
       "      <td>I love Maui Coffee!</td>\n",
       "      <td>My first experience with Maui Coffee was bring...</td>\n",
       "      <td>Title: I love Maui Coffee!; Content: My first ...</td>\n",
       "      <td>118</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>1000 rows × 7 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "      ProductId          UserId  Score  \\\n",
       "0    B003XPF9BO  A3R7JR3FMEBXQB      5   \n",
       "297  B003VXHGPK  A21VWSCGW7UUAR      4   \n",
       "296  B008JKTTUA  A34XBAIFT02B60      1   \n",
       "295  B000LKTTTW  A14MQ40CCU8B13      5   \n",
       "294  B001D09KAM  A34XBAIFT02B60      1   \n",
       "..          ...             ...    ...   \n",
       "623  B0000CFXYA  A3GS4GWPIBV0NT      1   \n",
       "624  B0001BH5YM   A1BZ3HMAKK0NC      5   \n",
       "625  B0009ET7TC  A2FSDQY5AI6TNX      5   \n",
       "619  B007PA32L2  A15FF2P7RPKH6G      5   \n",
       "999  B001EQ5GEO  A3VYU0VO6DYV6I      5   \n",
       "\n",
       "                                               Summary  \\\n",
       "0    where does one  start...and stop... with a tre...   \n",
       "297                   Good, but not Wolfgang Puck good   \n",
       "296  Should advertise coconut as an ingredient more...   \n",
       "295                                   Best tomato soup   \n",
       "294  Should advertise coconut as an ingredient more...   \n",
       "..                                                 ...   \n",
       "623                      Strange inflammation response   \n",
       "624                      My favorite and only  MUSTARD   \n",
       "625                           My furbabies LOVE these!   \n",
       "619                          got this for the daughter   \n",
       "999                                I love Maui Coffee!   \n",
       "\n",
       "                                                  Text  \\\n",
       "0    Wanted to save some to bring to my Chicago fam...   \n",
       "297  Honestly, I have to admit that I expected a li...   \n",
       "296  First, these should be called Mac - Coconut ba...   \n",
       "295  I have a hard time finding packaged food of an...   \n",
       "294  First, these should be called Mac - Coconut ba...   \n",
       "..                                                 ...   \n",
       "623  Truthfully wasn't crazy about the taste of the...   \n",
       "624  You've just got to experience this mustard... ...   \n",
       "625  Shake the container and they come running. Eve...   \n",
       "619  all i have heard since she got a kuerig is why...   \n",
       "999  My first experience with Maui Coffee was bring...   \n",
       "\n",
       "                                              combined  n_tokens  \n",
       "0    Title: where does one  start...and stop... wit...        52  \n",
       "297  Title: Good, but not Wolfgang Puck good; Conte...       178  \n",
       "296  Title: Should advertise coconut as an ingredie...        78  \n",
       "295  Title: Best tomato soup; Content: I have a har...       111  \n",
       "294  Title: Should advertise coconut as an ingredie...        78  \n",
       "..                                                 ...       ...  \n",
       "623  Title: Strange inflammation response; Content:...       110  \n",
       "624  Title: My favorite and only  MUSTARD; Content:...        80  \n",
       "625  Title: My furbabies LOVE these!; Content: Shak...        47  \n",
       "619  Title: got this for the daughter; Content: all...        50  \n",
       "999  Title: I love Maui Coffee!; Content: My first ...       118  \n",
       "\n",
       "[1000 rows x 7 columns]"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 2. Get embeddings and save them for future reuse"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Ensure you have your API key set in your environment per the README: https://github.com/openai/openai-python#usage\n",
    "\n",
    "# This may take a few minutes\n",
    "df[\"embedding\"] = df.combined.apply(lambda x: get_embedding(x, engine=embedding_model))\n",
    "df.to_csv(\"data/fine_food_reviews_with_embeddings_1k.csv\")\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python3 (GPT)",
   "language": "python",
   "name": "gpt"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.11"
  },
  "vscode": {
   "interpreter": {
    "hash": "365536dcbde60510dc9073d6b991cd35db2d9bac356a11f5b64279a5e6708b97"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}