Skin_Cancer_Dashboard / src /streamlit_app.py
MoritzMMuller's picture
Update src/streamlit_app.py
962115e verified
raw
history blame
12.9 kB
import os
import streamlit as st
from PIL import Image
import pandas as pd
from datetime import datetime
from transformers import (
AutoFeatureExtractor,
AutoModelForImageClassification,
AutoTokenizer,
AutoModelForSeq2SeqLM,
pipeline )
import requests
from geopy.geocoders import Nominatim
import folium
from streamlit_folium import st_folium
import cv2
import numpy as np
st.set_page_config(page_title="Skin Cancer Dashboard", layout="wide")
# --- Configuration ---
# Ensure you have set your Hugging Face token as an environment variable:
# export HF_TOKEN="YOUR_TOKEN_HERE"
MODEL_NAME = "Anwarkh1/Skin_Cancer-Image_Classification"
LLM_NAME = "google/flan-t5-xl"
HF_TOKEN = ".."
DATA_DIR = "data/harvard_dataset" # Path where you download and unpack the Harvard Dataverse dataset
DIARY_CSV = "diary.csv"
# Initialize session state defaults
if 'initialized' not in st.session_state:
st.session_state['label'] = None
st.session_state['score'] = None
st.session_state['mole_id'] = ''
st.session_state['geo_location'] = ''
st.session_state['chat_history'] = []
st.session_state['initialized'] = True
# Initialize geolocator for free geocoding
geolocator = Nominatim(user_agent="skin-dashboard", timeout = 10)
# --- Load Model & Feature Extractor ---
@st.cache_resource
def load_image_model(token: str):
extractor = AutoFeatureExtractor.from_pretrained(
MODEL_NAME,
use_auth_token=token
)
model = AutoModelForImageClassification.from_pretrained(
MODEL_NAME,
use_auth_token=token
)
return pipeline(
"image-classification",
model=model,
feature_extractor=extractor,
device=0 # set to GPU index or -1 for CPU
)
@st.cache_resource
def load_llm(token: str):
tokenizer = AutoTokenizer.from_pretrained(
LLM_NAME,
use_auth_token=token
)
# Use Seq2SeqLM for T5-style (text2text) models:
model = AutoModelForSeq2SeqLM.from_pretrained(
LLM_NAME,
use_auth_token=token,
)
return pipeline(
"text2text-generation",
model=model,
tokenizer=tokenizer,
device_map="auto", # or device=0 for single GPU / -1 for CPU
max_length=10000,
num_beams=5,
no_repeat_ngram_size=2,
early_stopping=True,
)
classifier = load_image_model(HF_TOKEN) if HF_TOKEN else None
explainer = load_llm(HF_TOKEN) if HF_TOKEN else None
# --- Diary Init ----
if not os.path.exists(DIARY_CSV):
pd.DataFrame(
columns=["timestamp", "image_path", "mole_id", "geo_location", "label", "score",
"body_location", "prior_consultation", "pain", "itch"]
).to_csv(DIARY_CSV, index=False)
# --- Save entry helper
def save_entry(img_path: str, mole_id: str, geo_location: str,
label: str, score: float,
body_location: str, prior_consult: str, pain: str, itch: str):
df = pd.read_csv(DIARY_CSV)
entry = {
"timestamp": datetime.now().isoformat(),
"image_path": img_path,
"mole_id": mole_id,
"geo_location": geo_location,
"label": label,
"score": float(score),
"body_location": body_location,
"prior_consultation": prior_consult,
"pain": pain,
"itch": itch
}
df.loc[len(df)] = entry
df.to_csv(DIARY_CSV, index=False)
# --- Preprocessing Functions ---
def remove_hair(img: np.ndarray) -> np.ndarray:
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (17, 17))
blackhat = cv2.morphologyEx(gray, cv2.MORPH_BLACKHAT, kernel)
_, mask = cv2.threshold(blackhat, 10, 255, cv2.THRESH_BINARY)
return cv2.inpaint(img, mask, 1, cv2.INPAINT_TELEA)
def preprocess(img: Image.Image, size: int = 224) -> Image.Image:
arr = np.array(img)
bgr = cv2.cvtColor(arr, cv2.COLOR_RGB2BGR)
bgr = remove_hair(bgr)
bgr = cv2.bilateralFilter(bgr, d=9, sigmaColor=75, sigmaSpace=75)
lab = cv2.cvtColor(bgr, cv2.COLOR_BGR2LAB)
l, a, b = cv2.split(lab)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
cl = clahe.apply(l)
merged = cv2.merge((cl, a, b))
bgr = cv2.cvtColor(merged, cv2.COLOR_LAB2BGR)
h, w = bgr.shape[:2]
scale = size / max(h, w)
nh, nw = int(h*scale), int(w*scale)
resized = cv2.resize(bgr, (nw, nh), interpolation=cv2.INTER_AREA)
canvas = np.full((size, size, 3), 128, dtype=np.uint8)
top, left = (size-nh)//2, (size-nw)//2
canvas[top:top+nh, left:left+nw] = resized
rgb = cv2.cvtColor(canvas, cv2.COLOR_BGR2RGB)
return Image.fromarray(rgb)
# -----Streamlit layout ----
st.title("🩺 Skin Cancer Recognition Dashboard")
menu = ["Scan Mole","Chat","Diary", "Dataset Explorer"]
choice = st.sidebar.selectbox("Navigation", menu)
# --- Initialize Scan a Mole ---
if choice == "Scan Mole":
st.header("🔍 Scan a Mole")
if not classifier:
st.error("Missing HF_TOKEN.")
st.stop()
upload = st.file_uploader("Upload a skin image", type=["jpg","jpeg","png"])
if not upload:
st.info("Please upload an image to begin.")
st.stop()
raw = Image.open(upload).convert("RGB")
st.image(raw, caption="Original", use_container_width=True)
proc = preprocess(raw)
st.image(proc, caption="Preprocessed", use_container_width=True)
mole = st.text_input("Mole ID")
city = st.text_input("Geographic location")
body = st.selectbox("Body location", ["Face","Scalp","Neck","Chest","Back","Arm","Hand","Leg","Foot","Other"])
prior = st.radio("Prior consult?", ["Yes","No"], horizontal=True)
pain = st.radio("Pain?", ["Yes","No"], horizontal=True)
itch = st.radio("Itch?", ["Yes","No"], horizontal=True)
if st.button("Classify"):
if not mole or not city:
st.error("Enter ID and location.")
else:
with st.spinner("Analyzing..."):
out = classifier(proc)
lbl, scr = out[0]["label"], out[0]["score"]
save_dir = os.path.join("scans", f"{mole}_{datetime.now().timestamp()}.png")
os.makedirs(os.path.dirname(save_dir), exist_ok=True)
raw.save(save_dir)
save_entry(save_dir, mole, city, lbl, scr, body, prior, pain, itch)
st.session_state.update({
'label': lbl,
'score': scr,
'mole_id': mole,
'geo_location': city
})
if st.session_state['label']:
st.success(f"Prediction: {st.session_state['label']} (score {st.session_state['score']:.2f})")
if explainer:
with st.spinner("Explaining..."):
text = explainer(f"Explain {st.session_state['label']} and recommendation.")[0]['generated_text']
st.markdown("### Explanation"); st.write(text)
loc = geolocator.geocode(st.session_state['geo_location'])
if loc:
m = folium.Map([loc.latitude, loc.longitude], zoom_start=12)
folium.Marker([loc.latitude, loc.longitude], "You").add_to(m)
resp = requests.post(
"https://overpass-api.de/api/interpreter",
data={"data": f"[out:json];node(around:5000,{loc.latitude},{loc.longitude})[~\"^(amenity|healthcare)$\"~\"clinic|doctors\"];out;"}
)
for el in resp.json().get('elements', []):
tags = el.get('tags', {});
lat = el.get('lat') or el['center']['lat']; lon = el.get('lon') or el['center']['lon']
folium.Marker([lat, lon], tags.get('name','Clinic')).add_to(m)
st.markdown("### Nearby Clinics"); st_folium(m, width=700)
# --- Chat Tab ---
elif choice == "Chat":
st.header("💬 Follow-Up Chat")
if not st.session_state['label']:
st.info("Please perform a scan first in the 'Scan Mole' tab.")
else:
lbl = st.session_state['label']
scr = st.session_state['score']
mid = st.session_state['mole_id']
gloc = st.session_state['geo_location']
st.markdown(f"**Context:** prediction for **{mid}** at **{gloc}** is **{lbl}** (confidence {scr:.2f}).")
# New user message comes first for immediate loop
user_q = st.chat_input("Ask a follow-up question:", key="chat_input")
if user_q and explainer:
st.session_state['chat_history'].append({'role':'user','content':user_q})
system_p = "You are a dermatology assistant. Provide concise medical advice without clarifying questions."
tpl = (
f"{system_p}\nContext: prediction is {lbl} with confidence {scr:.2f}.\n"
f"User: {user_q}\nAssistant:"
)
with st.spinner("Generating response..."):
reply = explainer(tpl)[0]['generated_text']
st.session_state['chat_history'].append({'role':'assistant','content':reply})
# Display the updated chat history
for msg in st.session_state['chat_history']:
prefix = 'You' if msg['role']=='user' else 'AI'
st.markdown(f"**{prefix}:** {msg['content']}")
# --- Diary Page ---
elif choice == "Diary":
st.header("📖 Skin Cancer Diary")
df = pd.read_csv(DIARY_CSV)
df['timestamp'] = pd.to_datetime(df['timestamp'])
if df.empty:
st.info("No diary entries yet.")
else:
mole_ids = sorted(df['mole_id'].unique())
sel = st.selectbox("Select Mole to View", ['All'] + mole_ids, key="diary_sel")
if sel == 'All':
# Display moles in columns (max 3 per row)
chunks = [mole_ids[i:i+3] for i in range(0, len(mole_ids), 3)]
for group in chunks:
cols = st.columns(len(group))
for col, mid in zip(cols, group):
with col:
st.subheader(mid)
entries = df[df['mole_id'] == mid].sort_values('timestamp')
# Show image timeline
for _, row in entries.iterrows():
if os.path.exists(row['image_path']):
st.image(
row['image_path'],
width=150,
caption=f"{row['timestamp'].strftime('%Y-%m-%d')}{row['score']:.2f}"
)
st.write(f"Total scans: {len(entries)}")
else:
# Detailed view for a single mole
entries = df[df['mole_id'] == sel].sort_values('timestamp')
if entries.empty:
st.warning(f"No entries for {sel}.")
else:
# Score over time
st.line_chart(entries.set_index('timestamp')['score'])
st.markdown("#### Image Timeline")
for _, row in entries.iterrows():
if os.path.exists(row['image_path']):
st.image(
row['image_path'],
width=200,
caption=(
f"{row['timestamp'].strftime('%Y-%m-%d %H:%M')} — "
f"Score: {row['score']:.2f}"
)
)
st.markdown("#### Details")
st.dataframe(
entries[
['timestamp','geo_location','label','score',
'body_location','prior_consultation','pain','itch']
]
.rename(columns={
'timestamp':'Time','geo_location':'Location',
'label':'Diagnosis','score':'Confidence',
'body_location':'Body Part','prior_consultation':'Prior Consult',
'pain':'Pain','itch':'Itch'
})
.sort_values('Time', ascending=False)
)
else:
st.header("📂 Dataset Explorer")
st.write("Preview images from the Harvard Skin Cancer Dataset")
# pick up to 15 image files
image_files = [
f for f in os.listdir(DATA_DIR)
if os.path.isfile(os.path.join(DATA_DIR, f))
and f.lower().endswith((".jpg", ".jpeg", ".png"))
][:15]
for i in range(0, len(image_files), 3):
cols = st.columns(3)
for col, fn in zip(cols, image_files[i : i + 3]):
path = os.path.join(DATA_DIR, fn)
img = Image.open(path)
col.image(img, use_container_width=True)
col.caption(fn)
st.sidebar.markdown("---")
st.sidebar.write("Dataset powered by Harvard Dataverse [DBW86T]")
st.sidebar.write(f"Model: {MODEL_NAME}")
st.sidebar.write(f"LLM: {LLM_NAME}")
if __name__ == '__main__':
st.write()