File size: 12,662 Bytes
f31dc66
 
 
 
 
 
 
 
 
 
 
5ee7ab3
2a64c1c
 
 
 
 
 
f31dc66
 
 
 
 
22353f5
f31dc66
 
22353f5
f31dc66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3567378
5ee7ab3
f31dc66
1164227
 
 
 
3ac60b6
1164227
 
 
 
3ac60b6
1164227
 
 
 
 
36422f4
f31dc66
 
 
 
 
9ed5f58
f31dc66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import os
import streamlit as st
from PIL import Image
import pandas as pd
from datetime import datetime
import requests
from geopy.geocoders import Nominatim
import folium
from streamlit_folium import st_folium
import cv2
import numpy as np
from huggingface_hub import snapshot_download
from transformers import (
    AutoFeatureExtractor,
    AutoModelForImageClassification,
    ConvNextConfig,
    pipeline,
)

st.set_page_config(page_title="Skin Cancer Dashboard", layout="wide")

# --- Configuration ---
# Ensure you have set your Hugging Face token as an environment variable:
#export HF_TOKEN="YOUR_TOKEN_HERE"
MODEL_NAME = "Anwarkh1/Skin_Cancer-Image_Classification"
LLM_NAME = "google/flan-t5-xl"
HF_TOKEN = os.environ.get("HF_TOKEN")
DATA_DIR = "data/harvard_dataset"  # Path where you download and unpack the Harvard Dataverse dataset
DIARY_CSV = "diary.csv"

# Initialize session state defaults
if 'initialized' not in st.session_state:
    st.session_state['label'] = None
    st.session_state['score'] = None
    st.session_state['mole_id'] = ''
    st.session_state['geo_location'] = ''
    st.session_state['chat_history'] = []
    st.session_state['initialized'] = True

# Initialize geolocator for free geocoding
geolocator = Nominatim(user_agent="skin-dashboard", timeout = 10)


@st.cache_resource
def load_image_model(token: str):
    return pipeline(
        "image-classification",
        feature_extractor=AutoFeatureExtractor.from_pretrained(
            MODEL_NAME,
            #subfolder="Skin_Cancer-Image_Classification",
            use_auth_token=token
        ),
        model=AutoModelForImageClassification.from_pretrained(
            MODEL_NAME,
            #subfolder="Skin_Cancer-Image_Classification",
            use_auth_token=token
        ),
        device=0  # or -1 for CPU
    )



@st.cache_resource
def load_llm(token: str):
    return pipeline(
        "text2text-generation",
        model=LLM_NAME,
        device_map="auto",    # or device=0 for single GPU / -1 for CPU
        max_length=10000,
        num_beams=5,
        no_repeat_ngram_size=2,
        early_stopping=True,

    )
classifier = load_image_model(HF_TOKEN) if HF_TOKEN else None
explainer = load_llm(HF_TOKEN) if HF_TOKEN else None

# --- Diary Init ----

if not os.path.exists(DIARY_CSV):
    pd.DataFrame(
        columns=["timestamp", "image_path", "mole_id", "geo_location", "label", "score",
                 "body_location", "prior_consultation", "pain", "itch"]
    ).to_csv(DIARY_CSV, index=False)

# --- Save entry helper

def save_entry(img_path: str, mole_id: str, geo_location: str,
               label: str, score: float,
               body_location: str, prior_consult: str, pain: str, itch: str):
    df = pd.read_csv(DIARY_CSV)
    entry = {
        "timestamp": datetime.now().isoformat(),
        "image_path": img_path,
        "mole_id": mole_id,
        "geo_location": geo_location,
        "label": label,
        "score": float(score),
        "body_location": body_location,
        "prior_consultation": prior_consult,
        "pain": pain,
        "itch": itch
    }
    df.loc[len(df)] = entry
    df.to_csv(DIARY_CSV, index=False)

# --- Preprocessing Functions ---
def remove_hair(img: np.ndarray) -> np.ndarray:
    gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (17, 17))
    blackhat = cv2.morphologyEx(gray, cv2.MORPH_BLACKHAT, kernel)
    _, mask = cv2.threshold(blackhat, 10, 255, cv2.THRESH_BINARY)
    return cv2.inpaint(img, mask, 1, cv2.INPAINT_TELEA)


def preprocess(img: Image.Image, size: int = 224) -> Image.Image:
    arr = np.array(img)
    bgr = cv2.cvtColor(arr, cv2.COLOR_RGB2BGR)
    bgr = remove_hair(bgr)
    bgr = cv2.bilateralFilter(bgr, d=9, sigmaColor=75, sigmaSpace=75)
    lab = cv2.cvtColor(bgr, cv2.COLOR_BGR2LAB)
    l, a, b = cv2.split(lab)
    clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
    cl = clahe.apply(l)
    merged = cv2.merge((cl, a, b))
    bgr = cv2.cvtColor(merged, cv2.COLOR_LAB2BGR)
    h, w = bgr.shape[:2]
    scale = size / max(h, w)
    nh, nw = int(h*scale), int(w*scale)
    resized = cv2.resize(bgr, (nw, nh), interpolation=cv2.INTER_AREA)
    canvas = np.full((size, size, 3), 128, dtype=np.uint8)
    top, left = (size-nh)//2, (size-nw)//2
    canvas[top:top+nh, left:left+nw] = resized
    rgb = cv2.cvtColor(canvas, cv2.COLOR_BGR2RGB)
    return Image.fromarray(rgb)

# -----Streamlit layout ---- 
st.title("๐Ÿฉบ Skin Cancer Recognition Dashboard")
menu = ["Scan Mole","Chat","Diary", "Dataset Explorer"]
choice = st.sidebar.selectbox("Navigation", menu)

# --- Initialize Scan a Mole ---
if choice == "Scan Mole":
    st.header("๐Ÿ” Scan a Mole")
    if not classifier:
        st.error("Missing HF_TOKEN.")
        st.stop()

    upload = st.file_uploader("Upload a skin image", type=["jpg","jpeg","png"])
    if not upload:
        st.info("Please upload an image to begin.")
        st.stop()

    raw = Image.open(upload).convert("RGB")
    st.image(raw, caption="Original", use_container_width=True)

    proc = preprocess(raw)
    st.image(proc, caption="Preprocessed", use_container_width=True)

    mole = st.text_input("Mole ID")
    city = st.text_input("Geographic location")
    body = st.selectbox("Body location", ["Face","Scalp","Neck","Chest","Back","Arm","Hand","Leg","Foot","Other"])
    prior = st.radio("Prior consult?", ["Yes","No"], horizontal=True)
    pain = st.radio("Pain?", ["Yes","No"], horizontal=True)
    itch = st.radio("Itch?", ["Yes","No"], horizontal=True)

    if st.button("Classify"):
        if not mole or not city:
            st.error("Enter ID and location.")
        else:
            with st.spinner("Analyzing..."):
                out = classifier(proc)
            lbl, scr = out[0]["label"], out[0]["score"]
            save_dir = os.path.join("scans", f"{mole}_{datetime.now().timestamp()}.png")
            os.makedirs(os.path.dirname(save_dir), exist_ok=True)
            raw.save(save_dir)
            save_entry(save_dir, mole, city, lbl, scr, body, prior, pain, itch)
            st.session_state.update({
                'label': lbl,
                'score': scr,
                'mole_id': mole,
                'geo_location': city
            })

    if st.session_state['label']:
        st.success(f"Prediction: {st.session_state['label']} (score {st.session_state['score']:.2f})")
        if explainer:
            with st.spinner("Explaining..."):
                text = explainer(f"Explain {st.session_state['label']} and recommendation.")[0]['generated_text']
            st.markdown("### Explanation"); st.write(text)

        loc = geolocator.geocode(st.session_state['geo_location'])
        if loc:
            m = folium.Map([loc.latitude, loc.longitude], zoom_start=12)
            folium.Marker([loc.latitude, loc.longitude], "You").add_to(m)
            resp = requests.post(
                "https://overpass-api.de/api/interpreter",
                data={"data": f"[out:json];node(around:5000,{loc.latitude},{loc.longitude})[~\"^(amenity|healthcare)$\"~\"clinic|doctors\"];out;"}
            )
            for el in resp.json().get('elements', []):
                tags = el.get('tags', {});
                lat = el.get('lat') or el['center']['lat']; lon = el.get('lon') or el['center']['lon']
                folium.Marker([lat, lon], tags.get('name','Clinic')).add_to(m)
            st.markdown("### Nearby Clinics"); st_folium(m, width=700)

# --- Chat Tab ---
elif choice == "Chat":
    st.header("๐Ÿ’ฌ Follow-Up Chat")
    if not st.session_state['label']:
        st.info("Please perform a scan first in the 'Scan Mole' tab.")
    else:
        lbl = st.session_state['label']
        scr = st.session_state['score']
        mid = st.session_state['mole_id']
        gloc = st.session_state['geo_location']
        st.markdown(f"**Context:** prediction for **{mid}** at **{gloc}** is **{lbl}** (confidence {scr:.2f}).")

        # New user message comes first for immediate loop
        user_q = st.chat_input("Ask a follow-up question:", key="chat_input")
        if user_q and explainer:
            st.session_state['chat_history'].append({'role':'user','content':user_q})
            system_p = "You are a dermatology assistant. Provide concise medical advice without clarifying questions."
            tpl = (
                f"{system_p}\nContext: prediction is {lbl} with confidence {scr:.2f}.\n"
                f"User: {user_q}\nAssistant:"
            )
            with st.spinner("Generating response..."):
                reply = explainer(tpl)[0]['generated_text']
            st.session_state['chat_history'].append({'role':'assistant','content':reply})

        # Display the updated chat history
        for msg in st.session_state['chat_history']:
            prefix = 'You' if msg['role']=='user' else 'AI'
            st.markdown(f"**{prefix}:** {msg['content']}")


# --- Diary Page ---
elif choice == "Diary":
    st.header("๐Ÿ“– Skin Cancer Diary")
    df = pd.read_csv(DIARY_CSV)
    df['timestamp'] = pd.to_datetime(df['timestamp'])
    if df.empty:
        st.info("No diary entries yet.")
    else:
        mole_ids = sorted(df['mole_id'].unique())
        sel = st.selectbox("Select Mole to View", ['All'] + mole_ids, key="diary_sel")
        if sel == 'All':
            # Display moles in columns (max 3 per row)
            chunks = [mole_ids[i:i+3] for i in range(0, len(mole_ids), 3)]
            for group in chunks:
                cols = st.columns(len(group))
                for col, mid in zip(cols, group):
                    with col:
                        st.subheader(mid)
                        entries = df[df['mole_id'] == mid].sort_values('timestamp')
                        # Show image timeline
                        for _, row in entries.iterrows():
                            if os.path.exists(row['image_path']):
                                st.image(
                                    row['image_path'],
                                    width=150,
                                    caption=f"{row['timestamp'].strftime('%Y-%m-%d')} โ€” {row['score']:.2f}"
                                )
                        st.write(f"Total scans: {len(entries)}")
        else:
            # Detailed view for a single mole
            entries = df[df['mole_id'] == sel].sort_values('timestamp')
            if entries.empty:
                st.warning(f"No entries for {sel}.")
            else:
                # Score over time
                st.line_chart(entries.set_index('timestamp')['score'])
                st.markdown("#### Image Timeline")
                for _, row in entries.iterrows():
                    if os.path.exists(row['image_path']):
                        st.image(
                            row['image_path'],
                            width=200,
                            caption=(
                                f"{row['timestamp'].strftime('%Y-%m-%d %H:%M')} โ€” "
                                f"Score: {row['score']:.2f}"
                            )
                        )
                st.markdown("#### Details")
                st.dataframe(
                    entries[
                        ['timestamp','geo_location','label','score',
                         'body_location','prior_consultation','pain','itch']
                    ]
                    .rename(columns={
                        'timestamp':'Time','geo_location':'Location',
                        'label':'Diagnosis','score':'Confidence',
                        'body_location':'Body Part','prior_consultation':'Prior Consult',
                        'pain':'Pain','itch':'Itch'
                    })
                    .sort_values('Time', ascending=False)
                )

else:
    st.header("๐Ÿ“‚ Dataset Explorer")
    st.write("Preview images from the Harvard Skin Cancer Dataset")

    # pick up to 15 image files
    image_files = [
    f for f in os.listdir(DATA_DIR)
    if os.path.isfile(os.path.join(DATA_DIR, f))
    and f.lower().endswith((".jpg", ".jpeg", ".png"))
    ][:15]

    for i in range(0, len(image_files), 3):
        cols = st.columns(3)
        for col, fn in zip(cols, image_files[i : i + 3]):
            path = os.path.join(DATA_DIR, fn)
            img = Image.open(path)
            col.image(img, use_container_width=True)
            col.caption(fn)

st.sidebar.markdown("---")
st.sidebar.write("Dataset powered by Harvard Dataverse [DBW86T]")
st.sidebar.write(f"Model: {MODEL_NAME}")
st.sidebar.write(f"LLM: {LLM_NAME}")

if __name__ == '__main__':
    st.write()