Spaces:
Running
on
Zero
Running
on
Zero
File size: 35,056 Bytes
7150117 86d5c5f 7150117 a0e970b 95230fb b55bd43 7150117 b55bd43 7150117 4990b34 ac2c54a 7a6c881 86d5c5f 8640a78 86d5c5f 8640a78 86d5c5f 86b2ecb 7a6c881 5b1db8f 86d5c5f 7a6c881 86d5c5f 7a6c881 7150117 e809d91 7150117 a0e970b b55bd43 a0e970b b55bd43 a0e970b 95230fb b55bd43 95230fb b55bd43 95230fb b55bd43 95230fb b55bd43 95230fb b55bd43 95230fb 7150117 4990b34 7150117 7c1376e 9fff9fd 7150117 4990b34 7150117 7c1376e 7150117 7c1376e 9fff9fd 7150117 7c1376e 7150117 7c1376e 7150117 7c1376e e809d91 7c1376e e809d91 7150117 ac2c54a e809d91 ac2c54a e809d91 ac2c54a 7150117 8640a78 86d5c5f 7a6c881 ac2c54a 4990b34 7150117 a0e970b 7150117 042f856 a092fd7 7a6c881 7150117 042f856 a092fd7 042f856 7150117 042f856 7150117 e809d91 7150117 e809d91 a0e970b e809d91 a0e970b 7150117 86d5c5f 86b2ecb 7a6c881 8640a78 3e2f09d 7150117 80ec937 86d5c5f 7a6c881 5b1db8f 86d5c5f 5b1db8f 86d5c5f 7a6c881 7150117 80ec937 7150117 80ec937 7150117 c625bd1 a0e970b 5b1db8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 |
#!/usr/bin/env python3
"""
Tranception Design App - Hugging Face Spaces Version (Zero GPU Fixed)
"""
import os
import sys
# Set up caching to avoid re-downloading models
os.environ['HF_HOME'] = '/tmp/huggingface'
os.environ['TRANSFORMERS_CACHE'] = '/tmp/huggingface/transformers'
os.environ['HF_DATASETS_CACHE'] = '/tmp/huggingface/datasets'
# Ensure proper Hugging Face endpoint
os.environ['HF_ENDPOINT'] = 'https://huggingface.co'
# Disable offline mode to allow downloads
os.environ['TRANSFORMERS_OFFLINE'] = '0'
# Patch for transformers 4.17.0 URL issue in HF Spaces
import urllib.parse
def patch_transformers_url():
"""Fix URL scheme issue in transformers 4.17.0"""
try:
import transformers.file_utils
original_get_from_cache = transformers.file_utils.get_from_cache
def patched_get_from_cache(url, *args, **kwargs):
# Fix URLs that start with /api/ by prepending https://huggingface.co
if isinstance(url, str) and url.startswith('/api/'):
url = 'https://huggingface.co' + url
return original_get_from_cache(url, *args, **kwargs)
transformers.file_utils.get_from_cache = patched_get_from_cache
print("Applied URL patch for transformers")
except Exception as e:
print(f"Warning: Could not patch transformers URL handling: {e}")
import torch
import transformers
patch_transformers_url()
from transformers import PreTrainedTokenizerFast
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import gradio as gr
from huggingface_hub import hf_hub_download
import shutil
import uuid
import gc
import time
import datetime
import threading
# Simplified Zero GPU handling
try:
import spaces
SPACES_AVAILABLE = True
print("Zero GPU support detected")
except ImportError:
SPACES_AVAILABLE = False
print("Running without Zero GPU support")
except Exception as e:
# Catch any other initialization errors
SPACES_AVAILABLE = False
print(f"Zero GPU initialization warning: {e}")
print("Running without Zero GPU support")
# Runtime mode tracking
RUNTIME_MODE = "GPU" if SPACES_AVAILABLE else "CPU"
# Keep-alive state
last_activity = datetime.datetime.now()
activity_lock = threading.Lock()
def update_activity():
"""Update last activity timestamp"""
global last_activity
with activity_lock:
last_activity = datetime.datetime.now()
# Add current directory to path
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
# Check if we need to download and extract the tranception module
if not os.path.exists("tranception"):
print("Downloading Tranception repository...")
try:
# Clone the repository structure
result = os.system("git clone https://github.com/OATML-Markslab/Tranception.git temp_tranception")
if result != 0:
raise Exception("Failed to clone Tranception repository")
# Move the tranception module to current directory
shutil.move("temp_tranception/tranception", "tranception")
# Clean up
shutil.rmtree("temp_tranception")
except Exception as e:
print(f"Error setting up Tranception: {e}")
if os.path.exists("temp_tranception"):
shutil.rmtree("temp_tranception")
raise
import tranception
from tranception import config, model_pytorch
# Model loading configuration
MODEL_CACHE = {}
def get_model_path(model_name):
"""Get model path - always use HF Hub for Zero GPU spaces"""
# In HF Spaces, models are cached automatically by the transformers library
# Always return the HF Hub path to leverage this caching
return f"PascalNotin/{model_name}"
def load_model_cached(model_type):
"""Load model with caching to avoid re-downloading"""
global MODEL_CACHE
# Check if model is already in cache
if model_type in MODEL_CACHE:
print(f"Using cached {model_type} model")
return MODEL_CACHE[model_type]
print(f"Loading {model_type} model...")
model_name = f"Tranception_{model_type}"
model_path = get_model_path(model_name)
try:
# Create cache directory if it doesn't exist
cache_dir = "/tmp/huggingface/transformers"
os.makedirs(cache_dir, exist_ok=True)
# Try loading with minimal parameters first
model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(
model_path,
cache_dir=cache_dir
)
MODEL_CACHE[model_type] = model
print(f"{model_type} model loaded and cached")
return model
except Exception as e:
print(f"Error loading {model_type} model: {e}")
print(f"Attempting alternative loading method...")
# Try alternative loading approach with full URL
try:
# Use full URL to bypass any path resolution issues
full_url = f"https://huggingface.co/PascalNotin/Tranception_{model_type}"
model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(
full_url,
cache_dir=cache_dir
)
MODEL_CACHE[model_type] = model
print(f"{model_type} model loaded successfully with full URL")
return model
except Exception as e2:
print(f"Alternative loading also failed: {e2}")
# Final attempt: manually download config first
try:
import json
import requests
# Download config.json manually
config_url = f"https://huggingface.co/PascalNotin/Tranception_{model_type}/raw/main/config.json"
print(f"Manually downloading config from: {config_url}")
response = requests.get(config_url)
if response.status_code == 200:
# Save config locally
local_model_dir = f"/tmp/Tranception_{model_type}"
os.makedirs(local_model_dir, exist_ok=True)
with open(f"{local_model_dir}/config.json", "w") as f:
json.dump(response.json(), f)
# Now try loading from the HF model ID again
model = tranception.model_pytorch.TranceptionLMHeadModel.from_pretrained(
f"PascalNotin/Tranception_{model_type}",
cache_dir=cache_dir,
local_files_only=False
)
MODEL_CACHE[model_type] = model
print(f"{model_type} model loaded successfully after manual config download")
return model
else:
print(f"Failed to download config: {response.status_code}")
except Exception as e3:
print(f"Manual download also failed: {e3}")
# Fallback to Medium if requested model fails
if model_type != "Medium":
print("Falling back to Medium model...")
return load_model_cached("Medium")
raise
AA_vocab = "ACDEFGHIKLMNPQRSTVWY"
tokenizer = PreTrainedTokenizerFast(tokenizer_file="./tranception/utils/tokenizers/Basic_tokenizer",
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]"
)
def create_all_single_mutants(sequence,AA_vocab=AA_vocab,mutation_range_start=None,mutation_range_end=None):
all_single_mutants={}
sequence_list=list(sequence)
if mutation_range_start is None: mutation_range_start=1
if mutation_range_end is None: mutation_range_end=len(sequence)
for position,current_AA in enumerate(sequence[mutation_range_start-1:mutation_range_end]):
for mutated_AA in AA_vocab:
if current_AA!=mutated_AA:
mutated_sequence = sequence_list.copy()
mutated_sequence[mutation_range_start + position - 1] = mutated_AA
all_single_mutants[current_AA+str(mutation_range_start+position)+mutated_AA]="".join(mutated_sequence)
all_single_mutants = pd.DataFrame.from_dict(all_single_mutants,columns=['mutated_sequence'],orient='index')
all_single_mutants.reset_index(inplace=True)
all_single_mutants.columns = ['mutant','mutated_sequence']
return all_single_mutants
def create_scoring_matrix_visual(scores,sequence,image_index=0,mutation_range_start=None,mutation_range_end=None,AA_vocab=AA_vocab,annotate=True,fontsize=20,unique_id=None):
if unique_id is None:
unique_id = str(uuid.uuid4())
filtered_scores=scores.copy()
filtered_scores=filtered_scores[filtered_scores.position.isin(range(mutation_range_start,mutation_range_end+1))]
piv=filtered_scores.pivot(index='position',columns='target_AA',values='avg_score').round(4)
# Calculate mutation range length
mutation_range_len = mutation_range_end - mutation_range_start + 1
# Save CSV file
csv_path = 'fitness_scoring_substitution_matrix_{}_{}.csv'.format(unique_id, image_index)
# Create a more detailed CSV with mutation info
csv_data = []
for position in range(mutation_range_start,mutation_range_end+1):
for target_AA in list(AA_vocab):
mutant = sequence[position-1]+str(position)+target_AA
if mutant in set(filtered_scores.mutant):
score_value = filtered_scores.loc[filtered_scores.mutant==mutant,'avg_score']
if isinstance(score_value, pd.Series):
score = float(score_value.iloc[0])
else:
score = float(score_value)
else:
score = 0.0
csv_data.append({
'position': position,
'original_AA': sequence[position-1],
'target_AA': target_AA,
'mutation': mutant,
'fitness_score': score
})
csv_df = pd.DataFrame(csv_data)
csv_df.to_csv(csv_path, index=False)
# Continue with visualization
# Use large fixed width for clarity, height scales with positions (as in reference)
fig, ax = plt.subplots(figsize=(50, mutation_range_len))
scores_dict = {}
valid_mutant_set=set(filtered_scores.mutant)
ax.tick_params(bottom=True, top=True, left=True, right=True)
ax.tick_params(labelbottom=True, labeltop=True, labelleft=True, labelright=True)
if annotate:
for position in range(mutation_range_start,mutation_range_end+1):
for target_AA in list(AA_vocab):
mutant = sequence[position-1]+str(position)+target_AA
if mutant in valid_mutant_set:
score_value = filtered_scores.loc[filtered_scores.mutant==mutant,'avg_score']
if isinstance(score_value, pd.Series):
scores_dict[mutant] = float(score_value.iloc[0])
else:
scores_dict[mutant] = float(score_value)
else:
scores_dict[mutant]=0.0
# Format labels as in reference - always show mutation and score with 4 decimal places
labels = (np.asarray(["{} \n {:.4f}".format(symb,value) for symb, value in scores_dict.items() ])).reshape(mutation_range_len,len(AA_vocab))
heat = sns.heatmap(piv,annot=labels,fmt="",cmap='RdYlGn',linewidths=0.30,ax=ax,vmin=np.percentile(scores.avg_score,2),vmax=np.percentile(scores.avg_score,98),\
cbar_kws={'label': 'Log likelihood ratio (mutant / starting sequence)'},annot_kws={"size": fontsize})
else:
heat = sns.heatmap(piv,cmap='RdYlGn',linewidths=0.30,ax=ax,vmin=np.percentile(scores.avg_score,2),vmax=np.percentile(scores.avg_score,98),\
cbar_kws={'label': 'Log likelihood ratio (mutant / starting sequence)'},annot_kws={"size": fontsize})
# Use label sizes from reference
heat.figure.axes[-1].yaxis.label.set_size(fontsize=int(fontsize*1.5))
heat.set_title("Higher predicted scores (green) imply higher protein fitness",fontsize=fontsize*2, pad=40)
heat.set_ylabel("Sequence position", fontsize = fontsize*2)
heat.set_xlabel("Amino Acid mutation", fontsize = fontsize*2)
# Set y-axis labels (positions)
yticklabels = [str(pos)+' ('+sequence[pos-1]+')' for pos in range(mutation_range_start,mutation_range_end+1)]
heat.set_yticklabels(yticklabels, fontsize=fontsize, rotation=0)
# Set x-axis labels (amino acids) - ensuring correct number
heat.set_xticklabels(list(AA_vocab), fontsize=fontsize)
try:
plt.tight_layout()
image_path = 'fitness_scoring_substitution_matrix_{}_{}.png'.format(unique_id, image_index)
plt.savefig(image_path, dpi=100)
return image_path, csv_path
finally:
plt.close('all') # Ensure all figures are closed
plt.clf() # Clear the current figure
plt.cla() # Clear the current axes
def suggest_mutations(scores):
intro_message = "The following mutations may be sensible options to improve fitness: \n\n"
#Best mutants
top_mutants=list(scores.sort_values(by=['avg_score'],ascending=False).head(5).mutant)
top_mutants_fitness=list(scores.sort_values(by=['avg_score'],ascending=False).head(5).avg_score)
top_mutants_recos = [top_mutant+" ("+str(round(top_mutant_fitness,4))+")" for (top_mutant,top_mutant_fitness) in zip(top_mutants,top_mutants_fitness)]
mutant_recos = "The single mutants with highest predicted fitness are (positive scores indicate fitness increase Vs starting sequence, negative scores indicate fitness decrease):\n {} \n\n".format(", ".join(top_mutants_recos))
#Best positions
positive_scores = scores[scores.avg_score > 0]
if len(positive_scores) > 0:
# Only select numeric columns for groupby mean
positive_scores_position_avg = positive_scores.groupby(['position'])['avg_score'].mean().reset_index()
top_positions=list(positive_scores_position_avg.sort_values(by=['avg_score'],ascending=False).head(5)['position'].astype(str))
position_recos = "The positions with the highest average fitness increase are (only positions with at least one fitness increase are considered):\n {}".format(", ".join(top_positions))
else:
position_recos = "No positions with positive fitness effects found."
return intro_message+mutant_recos+position_recos
def check_valid_mutant(sequence,mutant,AA_vocab=AA_vocab):
valid = True
try:
from_AA, position, to_AA = mutant[0], int(mutant[1:-1]), mutant[-1]
except:
valid = False
if valid and position > 0 and position <= len(sequence):
if sequence[position-1]!=from_AA: valid=False
else:
valid = False
if to_AA not in AA_vocab: valid=False
return valid
def cleanup_old_files(max_age_minutes=30):
"""Clean up old inference files"""
import glob
current_time = time.time()
patterns = ["fitness_scoring_substitution_matrix_*.png",
"fitness_scoring_substitution_matrix_*.csv",
"all_mutations_fitness_scores_*.csv"]
cleaned_count = 0
for pattern in patterns:
for file_path in glob.glob(pattern):
try:
file_age = current_time - os.path.getmtime(file_path)
if file_age > max_age_minutes * 60:
os.remove(file_path)
cleaned_count += 1
except Exception as e:
# Log error but continue cleaning other files
print(f"Warning: Could not remove {file_path}: {e}")
if cleaned_count > 0:
print(f"Cleaned up {cleaned_count} old files")
def get_mutated_protein(sequence,mutant):
if not check_valid_mutant(sequence,mutant):
return "The mutant is not valid"
mutated_sequence = list(sequence)
mutated_sequence[int(mutant[1:-1])-1]=mutant[-1]
return ''.join(mutated_sequence)
def score_and_create_matrix_all_singles_impl(sequence,mutation_range_start=None,mutation_range_end=None,model_type="Large",scoring_mirror=False,batch_size_inference=20,max_number_positions_per_heatmap=50,num_workers=0,AA_vocab=AA_vocab):
# Update activity
update_activity()
# Clean up old files periodically
cleanup_old_files()
# Generate unique ID for this request
unique_id = str(uuid.uuid4())
if mutation_range_start is None: mutation_range_start=1
if mutation_range_end is None: mutation_range_end=len(sequence)
# Clean sequence
sequence = sequence.strip().upper()
# Validate
assert len(sequence) > 0, "no sequence entered"
assert mutation_range_start <= mutation_range_end, "mutation range is invalid"
assert mutation_range_end <= len(sequence), f"End position ({mutation_range_end}) exceeds sequence length ({len(sequence)})"
# Load model with caching
model = load_model_cached(model_type)
# Move model to appropriate device INSIDE the GPU decorated function
# This is crucial for Zero GPU - the model must be moved to GPU inside the decorated function
# Device selection - Zero GPU will provide CUDA when decorated with @spaces.GPU
print(f"GPU Available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
device = torch.device("cuda")
model = model.to(device)
gpu_name = torch.cuda.get_device_name(0)
gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1024**3
print(f"Inference will take place on {gpu_name}")
print(f"GPU Memory: {gpu_memory:.2f} GB")
# Increase batch size for GPU inference
batch_size_inference = min(batch_size_inference, 50)
else:
device = torch.device("cpu")
model = model.to(device)
print("Inference will take place on CPU")
# Reduce batch size for CPU inference
batch_size_inference = min(batch_size_inference, 10)
try:
model.eval()
model.config.tokenizer = tokenizer
all_single_mutants = create_all_single_mutants(sequence,AA_vocab,mutation_range_start,mutation_range_end)
with torch.no_grad():
scores = model.score_mutants(DMS_data=all_single_mutants,
target_seq=sequence,
scoring_mirror=scoring_mirror,
batch_size_inference=batch_size_inference,
num_workers=num_workers,
indel_mode=False
)
scores = pd.merge(scores,all_single_mutants,on="mutated_sequence",how="left")
scores["position"]=scores["mutant"].map(lambda x: int(x[1:-1]))
scores["target_AA"] = scores["mutant"].map(lambda x: x[-1])
score_heatmaps = []
csv_files = []
mutation_range = mutation_range_end - mutation_range_start + 1
number_heatmaps = int((mutation_range - 1) / max_number_positions_per_heatmap) + 1
image_index = 0
window_start = mutation_range_start
window_end = min(mutation_range_end,mutation_range_start+max_number_positions_per_heatmap-1)
for image_index in range(number_heatmaps):
image_path, csv_path = create_scoring_matrix_visual(scores,sequence,image_index,window_start,window_end,AA_vocab,unique_id=unique_id)
score_heatmaps.append(image_path)
csv_files.append(csv_path)
window_start += max_number_positions_per_heatmap
window_end = min(mutation_range_end,window_start+max_number_positions_per_heatmap-1)
# Also save a comprehensive CSV with all mutations
comprehensive_csv_path = 'all_mutations_fitness_scores_{}.csv'.format(unique_id)
scores_export = scores[['mutant', 'position', 'target_AA', 'avg_score', 'mutated_sequence']].copy()
scores_export['original_AA'] = scores_export['mutant'].str[0]
scores_export = scores_export.rename(columns={'avg_score': 'fitness_score'})
scores_export = scores_export[['position', 'original_AA', 'target_AA', 'mutant', 'fitness_score', 'mutated_sequence']]
scores_export.to_csv(comprehensive_csv_path, index=False)
csv_files.append(comprehensive_csv_path)
return score_heatmaps, suggest_mutations(scores), csv_files
finally:
# Clean up GPU memory but keep model in cache
# Move model back to CPU to free GPU memory
if 'model' in locals():
model.cpu()
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
# Apply Zero GPU decorator if available
if SPACES_AVAILABLE:
try:
score_and_create_matrix_all_singles = spaces.GPU(duration=300)(score_and_create_matrix_all_singles_impl)
except Exception as e:
print(f"Warning: Could not apply Zero GPU decorator: {e}")
print("Falling back to CPU mode")
score_and_create_matrix_all_singles = score_and_create_matrix_all_singles_impl
else:
score_and_create_matrix_all_singles = score_and_create_matrix_all_singles_impl
def extract_sequence(protein_id, taxon, sequence):
return sequence
def clear_inputs(protein_sequence_input,mutation_range_start,mutation_range_end):
protein_sequence_input = ""
mutation_range_start = None
mutation_range_end = None
return protein_sequence_input,mutation_range_start,mutation_range_end
# Create Gradio app
tranception_design = gr.Blocks()
with tranception_design:
gr.Markdown("# In silico directed evolution for protein redesign with Tranception")
gr.Markdown("## 🧬 BASIS-China iGEM Team 2025 - Protein Engineering Platform")
gr.Markdown("### Welcome to BASIS-China's implementation of Tranception on Hugging Face Spaces!")
gr.Markdown("We are the BASIS-China iGEM team, and we're excited to present our deployment of the Tranception model for protein fitness prediction. This tool enables in silico directed evolution to iteratively improve protein fitness through single amino acid substitutions. At each step, Tranception computes log likelihood ratios for all possible mutations compared to the starting sequence, generating fitness heatmaps and recommendations to guide protein engineering.")
gr.Markdown("**Technical Details**: This deployment leverages Hugging Face's Zero GPU infrastructure, which dynamically allocates H200 GPU resources when available. This allows for efficient inference while managing computational resources effectively.")
# Hidden keep-alive component
with gr.Row(visible=False):
keep_alive_component = gr.Number(value=0, visible=False)
def keep_alive_update():
update_activity()
return time.time()
# Update every 2 minutes to keep websocket alive
keep_alive_timer = gr.Timer(value=120)
keep_alive_timer.tick(keep_alive_update, outputs=[keep_alive_component])
# Status indicator
with gr.Row():
with gr.Column(scale=1):
def get_gpu_status():
global RUNTIME_MODE
with activity_lock:
time_since = (datetime.datetime.now() - last_activity).total_seconds()
if RUNTIME_MODE == "GPU":
status = "🔥 Zero GPU"
else:
status = "💻 CPU Mode (GPU initialization failed)"
return f"{status} | Last activity: {int(time_since)}s ago"
gpu_status = gr.Textbox(
label="Compute Status",
value=get_gpu_status,
every=5, # Update every 5 seconds
interactive=False,
elem_id="gpu_status"
)
with gr.Tabs():
with gr.TabItem("Input"):
with gr.Row():
protein_sequence_input = gr.Textbox(lines=1,
label="Protein sequence",
placeholder = "Input the sequence of amino acids representing the starting protein of interest or select one from the list of examples below. You may enter the full sequence or just a subdomain (providing full context typically leads to better results, but is slower at inference)"
)
with gr.Row():
mutation_range_start = gr.Number(label="Start of mutation window (first position indexed at 1)", value=1, precision=0)
mutation_range_end = gr.Number(label="End of mutation window (leave empty for full lenth)", value=10, precision=0)
with gr.TabItem("Parameters"):
with gr.Row():
model_size_selection = gr.Radio(label="Tranception model size (larger models are more accurate but are slower at inference)",
choices=["Small","Medium","Large"],
value="Small")
with gr.Row():
scoring_mirror = gr.Checkbox(label="Score protein from both directions (leads to more robust fitness predictions, but doubles inference time)")
with gr.Row():
batch_size_inference = gr.Number(label="Model batch size at inference time (reduce for CPU)",value = 10, precision=0)
with gr.Row():
gr.Markdown("Note: the current version does not leverage retrieval of homologs at inference time to increase fitness prediction performance.")
with gr.Row():
clear_button = gr.Button(value="Clear",variant="secondary")
run_button = gr.Button(value="Predict fitness",variant="primary")
protein_ID = gr.Textbox(label="Uniprot ID", visible=False)
taxon = gr.Textbox(label="Taxon", visible=False)
examples = gr.Examples(
inputs=[protein_ID, taxon, protein_sequence_input],
outputs=[protein_sequence_input],
fn=extract_sequence,
examples=[
['ADRB2_HUMAN' ,'Human', 'MGQPGNGSAFLLAPNGSHAPDHDVTQERDEVWVVGMGIVMSLIVLAIVFGNVLVITAIAKFERLQTVTNYFITSLACADLVMGLAVVPFGAAHILMKMWTFGNFWCEFWTSIDVLCVTASIETLCVIAVDRYFAITSPFKYQSLLTKNKARVIILMVWIVSGLTSFLPIQMHWYRATHQEAINCYANETCCDFFTNQAYAIASSIVSFYVPLVIMVFVYSRVFQEAKRQLQKIDKSEGRFHVQNLSQVEQDGRTGHGLRRSSKFCLKEHKALKTLGIIMGTFTLCWLPFFIVNIVHVIQDNLIRKEVYILLNWIGYVNSGFNPLIYCRSPDFRIAFQELLCLRRSSLKAYGNGYSSNGNTGEQSGYHVEQEKENKLLCEDLPGTEDFVGHQGTVPSDNIDSQGRNCSTNDSLL'],
['IF1_ECOLI' ,'Prokaryote', 'MAKEDNIEMQGTVLETLPNTMFRVELENGHVVTAHISGKMRKNYIRILTGDKVTVELTPYDLSKGRIVFRSR'],
['P53_HUMAN' ,'Human', 'MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGPDEAPRMPEAAPRVAPAPAAPTPAAPAPAPSWPLSSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKMFCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVVRRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFRHSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKGEPHHELPPGSTKRALPNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMFRELNEALELKDAQAGKEPGGSRAHSSHLKSKKGQSTSRHKKLMFKTEGPDSD'],
['BLAT_ECOLX' ,'Prokaryote', 'MSIQHFRVALIPFFAAFCLPVFAHPETLVKVKDAEDQLGARVGYIELDLNSGKILESFRPEERFPMMSTFKVLLCGAVLSRVDAGQEQLGRRIHYSQNDLVEYSPVTEKHLTDGMTVRELCSAAITMSDNTAANLLLTTIGGPKELTAFLHNMGDHVTRLDRWEPELNEAIPNDERDTTMPAAMATTLRKLLTGELLTLASRQQLIDWMEADKVAGPLLRSALPAGWFIADKSGAGERGSRGIIAALGPDGKPSRIVVIYTTGSQATMDERNRQIAEIGASLIKHW'],
['BRCA1_HUMAN' ,'Human', 'MDLSALRVEEVQNVINAMQKILECPICLELIKEPVSTKCDHIFCKFCMLKLLNQKKGPSQCPLCKNDITKRSLQESTRFSQLVEELLKIICAFQLDTGLEYANSYNFAKKENNSPEHLKDEVSIIQSMGYRNRAKRLLQSEPENPSLQETSLSVQLSNLGTVRTLRTKQRIQPQKTSVYIELGSDSSEDTVNKATYCSVGDQELLQITPQGTRDEISLDSAKKAACEFSETDVTNTEHHQPSNNDLNTTEKRAAERHPEKYQGSSVSNLHVEPCGTNTHASSLQHENSSLLLTKDRMNVEKAEFCNKSKQPGLARSQHNRWAGSKETCNDRRTPSTEKKVDLNADPLCERKEWNKQKLPCSENPRDTEDVPWITLNSSIQKVNEWFSRSDELLGSDDSHDGESESNAKVADVLDVLNEVDEYSGSSEKIDLLASDPHEALICKSERVHSKSVESNIEDKIFGKTYRKKASLPNLSHVTENLIIGAFVTEPQIIQERPLTNKLKRKRRPTSGLHPEDFIKKADLAVQKTPEMINQGTNQTEQNGQVMNITNSGHENKTKGDSIQNEKNPNPIESLEKESAFKTKAEPISSSISNMELELNIHNSKAPKKNRLRRKSSTRHIHALELVVSRNLSPPNCTELQIDSCSSSEEIKKKKYNQMPVRHSRNLQLMEGKEPATGAKKSNKPNEQTSKRHDSDTFPELKLTNAPGSFTKCSNTSELKEFVNPSLPREEKEEKLETVKVSNNAEDPKDLMLSGERVLQTERSVESSSISLVPGTDYGTQESISLLEVSTLGKAKTEPNKCVSQCAAFENPKGLIHGCSKDNRNDTEGFKYPLGHEVNHSRETSIEMEESELDAQYLQNTFKVSKRQSFAPFSNPGNAEEECATFSAHSGSLKKQSPKVTFECEQKEENQGKNESNIKPVQTVNITAGFPVVGQKDKPVDNAKCSIKGGSRFCLSSQFRGNETGLITPNKHGLLQNPYRIPPLFPIKSFVKTKCKKNLLEENFEEHSMSPEREMGNENIPSTVSTISRNNIRENVFKEASSSNINEVGSSTNEVGSSINEIGSSDENIQAELGRNRGPKLNAMLRLGVLQPEVYKQSLPGSNCKHPEIKKQEYEEVVQTVNTDFSPYLISDNLEQPMGSSHASQVCSETPDDLLDDGEIKEDTSFAENDIKESSAVFSKSVQKGELSRSPSPFTHTHLAQGYRRGAKKLESSEENLSSEDEELPCFQHLLFGKVNNIPSQSTRHSTVATECLSKNTEENLLSLKNSLNDCSNQVILAKASQEHHLSEETKCSASLFSSQCSELEDLTANTNTQDPFLIGSSKQMRHQSESQGVGLSDKELVSDDEERGTGLEENNQEEQSMDSNLGEAASGCESETSVSEDCSGLSSQSDILTTQQRDTMQHNLIKLQQEMAELEAVLEQHGSQPSNSYPSIISDSSALEDLRNPEQSTSEKAVLTSQKSSEYPISQNPEGLSADKFEVSADSSTSKNKEPGVERSSPSKCPSLDDRWYMHSCSGSLQNRNYPSQEELIKVVDVEEQQLEESGPHDLTETSYLPRQDLEGTPYLESGISLFSDDPESDPSEDRAPESARVGNIPSSTSALKVPQLKVAESAQSPAAAHTTDTAGYNAMEESVSREKPELTASTERVNKRMSMVVSGLTPEEFMLVYKFARKHHITLTNLITEETTHVVMKTDAEFVCERTLKYFLGIAGGKWVVSYFWVTQSIKERKMLNEHDFEVRGDVVNGRNHQGPKRARESQDRKIFRGLEICCYGPFTNMPTDQLEWMVQLCGASVVKELSSFTLGTGVHPIVVVQPDAWTEDNGFHAIGQMCEAPVVTREWVLDSVALYQCQELDTYLIPQIPHSHY'],
['CALM1_HUMAN' ,'Human', 'MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMINEVDADGNGTIDFPEFLTMMARKMKDTDSEEEIREAFRVFDKDGNGYISAAELRHVMTNLGEKLTDEEVDEMIREADIDGDGQVNYEEFVQMMTAK'],
['CCDB_ECOLI' ,'Prokaryote', 'MQFKVYTYKRESRYRLFVDVQSDIIDTPGRRMVIPLASARLLSDKVSRELYPVVHIGDESWRMMTTDMASVPVSVIGEEVADLSHRENDIKNAINLMFWGI'],
['GFP_AEQVI' ,'Other eukaryote', 'MSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK'],
['GRB2_HUMAN' ,'Human', 'MEAIAKYDFKATADDELSFKRGDILKVLNEECDQNWYKAELNGKDGFIPKNYIEMKPHPWFFGKIPRAKAEEMLSKQRHDGAFLIRESESAPGDFSLSVKFGNDVQHFKVLRDGAGKYFLWVVKFNSLNELVDYHRSTSVSRNQQIFLRDIEQVPQQPTYVQALFDFDPQEDGELGFRRGDFIHVMDNSDPNWWKGACHGQTGMFPRNYVTPVNRNV'],
],
)
gr.Markdown("<br>")
gr.Markdown("# Fitness predictions for all single amino acid substitutions in mutation range")
gr.Markdown("Inference may take a few seconds for short proteins & mutation ranges to several minutes for longer ones")
output_image = gr.Gallery(label="Fitness predictions for all single amino acid substitutions in mutation range") #Using Gallery to break down large scoring matrices into smaller images
output_recommendations = gr.Textbox(label="Mutation recommendations")
with gr.Row():
gr.Markdown("## Download CSV Files")
output_csv_files = gr.File(label="Download CSV files with fitness scores", file_count="multiple", interactive=False)
clear_button.click(
inputs = [protein_sequence_input,mutation_range_start,mutation_range_end],
outputs = [protein_sequence_input,mutation_range_start,mutation_range_end],
fn=clear_inputs
)
run_button.click(
fn=score_and_create_matrix_all_singles,
inputs=[protein_sequence_input,mutation_range_start,mutation_range_end,model_size_selection,scoring_mirror,batch_size_inference],
outputs=[output_image,output_recommendations,output_csv_files],
)
gr.Markdown("# Mutate the starting protein sequence")
with gr.Row():
mutation_triplet = gr.Textbox(lines=1,label="Selected mutation", placeholder = "Input the mutation triplet for the selected mutation (eg., M1A)")
mutate_button = gr.Button(value="Apply mutation to starting protein", variant="primary")
mutated_protein_sequence = gr.Textbox(lines=1,label="Mutated protein sequence")
mutate_button.click(
fn = get_mutated_protein,
inputs = [protein_sequence_input,mutation_triplet],
outputs = mutated_protein_sequence
)
gr.Markdown("<p>You may now use the output mutated sequence above as the starting sequence for another round of in silico directed evolution.</p>")
gr.Markdown("### About BASIS-China iGEM Team")
gr.Markdown("We are a high school synthetic biology team participating in the International Genetically Engineered Machine (iGEM) competition. Our 2025 project focuses on protein engineering and computational biology applications. This Tranception deployment is part of our broader effort to make advanced protein design tools accessible to the synthetic biology community.")
gr.Markdown("### About Tranception")
gr.Markdown("<p><b>Tranception: Protein Fitness Prediction with Autoregressive Transformers and Inference-time Retrieval</b><br>Pascal Notin, Mafalda Dias, Jonathan Frazer, Javier Marchena-Hurtado, Aidan N. Gomez, Debora S. Marks<sup>*</sup>, Yarin Gal<sup>*</sup><br><sup>* equal senior authorship</sup></p>")
gr.Markdown("Links: <a href='https://proceedings.mlr.press/v162/notin22a.html' target='_blank'>Paper</a> <a href='https://github.com/OATML-Markslab/Tranception' target='_blank'>Code</a> <a href='https://sites.google.com/view/proteingym/substitutions' target='_blank'>ProteinGym</a> <a href='https://igem.org/teams/5247' target='_blank'>BASIS-China iGEM Team</a>")
if __name__ == "__main__":
# Don't preload models at startup - this can cause Zero GPU initialization issues
# Models will be loaded and cached on first use
print("Starting Tranception app...")
print("Note: Models will be downloaded on first use")
print("Zero GPU spaces may sleep after ~15 minutes of inactivity")
# Try to launch with ZeroGPU support first
launch_success = False
max_retries = 3
retry_count = 0
while not launch_success and retry_count < max_retries:
try:
if retry_count > 0:
print(f"Retry attempt {retry_count}/{max_retries}...")
time.sleep(2) # Wait before retry
# Launch with queue for proper Zero GPU support
tranception_design.queue(max_size=20).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
share=False
)
launch_success = True
except RuntimeError as e:
if "Error while initializing ZeroGPU" in str(e):
retry_count += 1
if retry_count >= max_retries:
print(f"ZeroGPU initialization failed after {max_retries} attempts")
print("Falling back to CPU mode for stability")
print("Note: The app will run slower in CPU mode")
# Update runtime mode
RUNTIME_MODE = "CPU"
# Launch without queue which doesn't trigger ZeroGPU initialization
tranception_design.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
share=False
)
launch_success = True
else:
# Re-raise unexpected errors
raise |